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10. *Show that the kinetic energy of the gyroscope described in Chapter 9,

Problem 21, is

T = 1
2I1(Ω sinλ cosϕ)2 + 1

2I1(ϕ̇+ Ω cosλ)2 + 1
2I3(ψ̇ + Ω sinλ sinϕ)2.

From Lagrange’s equations, show that the angular velocity ω3 about

the axis is constant, and obtain the equation for ϕ without neglecting

Ω2. Show that motion with the axis pointing north becomes unstable

for very small values of ω3, and find the smallest value for which it

is stable. What are the stable positions when ω3 = 0? Interpret this

result in terms of a non-rotating frame.

11. *Find the Lagrangian function for a symmetric top whose pivot is free

to slide on a smooth horizontal table, in terms of the generalized co-

ordinates X,Y, ϕ, θ, ψ, and the principal moments I∗1 , I
∗
1 , I

∗
3 about the

centre of mass. (Note that Z is related to θ.) Show that the horizontal

motion of the centre of mass may be completely separated from the

rotational motion. What difference is there in the equation (10.15) for

steady precession? Are the precessional angular velocities greater or

less than in the case of a fixed pivot? Show that steady precession at

a given value of θ can occur for a smaller value of ω3 than in the case

of a fixed pivot.

12. *A uniform plank of length 2a is placed with one end on a smooth

horizontal floor and the other against a smooth vertical wall. Write

down the Lagrangian function, using two generalized co-ordinates, the

distance x of the foot of the plank from the wall, and its angle θ of

inclination to the horizontal, with a suitable constraint between the

two. Given that the plank is initially at rest at an inclination of 60◦,
find the angle at which it loses contact with the wall. (Hint : First write

the co-ordinates of the centre of mass in terms of x and θ. Note that

the reaction at the wall is related to the Lagrange multiplier.)

13. Use Hamilton’s principle to show that if F is any function of the general-

ized co-ordinates, then the Lagrangian functions L and L+dF/dt must

yield the same equations of motion. Hence show that the equations of

motion of a charged particle in an electromagnetic field are unaffected

by the ‘gauge transformation’ (A.42). (Hint : Take F = −qΛ.)

14. The stretched string of §10.6 is released from rest with its mid-point

displaced a distance a, and each half of the string straight. Find the

function f(x). Describe the shape of the string after (a) a short time,

(b) a time l/2c, and (c) a time l/c.
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15. *Two bodies of masses M1 and M2 are moving in circular orbits of

radii a1 and a2 about their centre of mass. The restricted three-body

problem concerns the motion of a third small body of mass m (� M1

or M2) in their gravitational field (e.g., a spacecraft in the vicinity of

the Earth–Moon system). Assuming that the third body is moving in

the plane of the first two, write down the Lagrangian function of the

system, using a rotating frame in which M1 and M2 are fixed. Find

the equations of motion. (Hint : The identities GM1 = ω2a2a2 and

GM2 = ω2a2a1 may be useful, with a = a1 + a2 and ω2 = GM/a3.)

16. *For the system of Problem 15, find the equations that must be satisfied

for ‘equilibrium’ in the rotating frame (i.e., circular motion with the

same angular velocity as M1 and M2). Consider ‘equilibrium’ positions

on the line of centres of M1 and M2. By roughly sketching the effec-

tive potential energy curve, show that there are three such positions,

but that all three are unstable. (Note: The positions are actually the

solutions of a quintic equation.) Show also that there are two ‘equi-

librium’ positions off the line of centres, in each of which the three

bodies form an equilateral triangle. (The stability of these so-called

Lagrangian points is the subject of Problem 12, Chapter 12. There is

further consideration of this important problem in §14.4.)
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Chapter 11

Small Oscillations and Normal Modes

In this chapter, we shall discuss a generalization of the harmonic oscillator

problem treated in §2.2 — the oscillations of a system of several degrees

of freedom near a position of equilibrium. We consider only conservative,

holonomic systems, described by n generalized co-ordinates q1, q2, . . . , qn.

Without loss of generality, we may choose the position of equilibrium to be

q1 = q2 = · · · = qn = 0. We shall begin by investigating the form of the

kinetic and potential energy functions near this point.

11.1 Orthogonal Co-ordinates

We shall restrict our attention to natural systems, for which the kinetic

energy is a homogeneous quadratic function of q̇1, q̇2, . . . , q̇n. (More gener-

ally, we could include also those forced systems — like that of §10.4 — for

which L can be written as a sum of a quadratic term T ′ and a term −V ′

independent of the time derivatives. The only essential restriction is that

there should be no linear terms.)

For example, for n = 2, we have

T = 1
2a11q̇

2
1 + a12q̇1q̇2 + 1

2a22q̇
2
2 . (11.1)

In general, the coefficients a11, a12, a22 will be functions of q1 and q2. How-

ever, if we are interested only in small values of q1 and q2, we may neglect

this dependence, and treat them as constants (equal to their values at

q1 = q2 = 0).

For a particle described by curvilinear co-ordinates, the co-ordinates are

called orthogonal if the co-ordinate curves always intersect at right angles

(see §3.5). In that case, the kinetic energy contains terms in q̇2
1 , q̇

2
2 , q̇

2
3 ,

but no cross products like q̇1q̇2. By an extension of this terminology, the
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generalized co-ordinates q1, q2, . . . , qn are called orthogonal if T is a sum of

squares, with no cross products — for example, if a12 above is zero.

It is a considerable simplification to choose the co-ordinates to be or-

thogonal, and this can always be done. For instance, we may set

q′1 = q1 +
a12

a11
q2,

so that, in terms of q′1 and q2, (11.1) becomes

T = 1
2a11q̇

′
1
2 + 1

2a
′
22q̇

2
2 , with a′22 = a22 −

a2
12

a11
. (11.2)

We can even go further. Since T is necessarily positive for all possible q̇′1,
q̇2, the coefficients in (11.2) must be positive numbers. Hence we can define

new co-ordinates

q′′1 =
√
a11q

′
1, q′′2 =

√

a′22q2,

so that T is reduced to a simple sum of squares:

T = 1
2 q̇

′′
1

2 + 1
2 q̇

′′
2

2. (11.3)

A similar procedure can be used in the general case. (It is called the

Gram–Schmidt orthogonalization procedure.) We may first eliminate the

cross products involving q̇1 by means of the transformation to

q′1 = q1 +
a12

a11
q2 + · · · + a1n

a11
qn,

then those involving q̇2, and so on. Thus we can always reduce T to the

standard form

T =

n
∑

α=1

1
2 q̇

2
α, (11.4)

where we now drop any primes.

As an illustration of these ideas, let us consider the double pendulum

illustrated in Fig. 11.1.
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Example: Kinetic energy of the double pendulum

θ

ϕ

L

M

Lθ

l lϕ

Lθ
m

Fig. 11.1

A double pendulum consists of a simple pendulum of mass M

and length L, with a second simple pendulum of mass m and

length l suspended from it. Consider only motion in a vertical

plane, so that the system has two degrees of freedom. Find a

standard set of co-ordinates in terms of which the kinetic energy

takes the form (11.4).

As generalized co-ordinates, we may initially choose the inclinations

θ and ϕ to the downward vertical. The velocity of the upper pendulum

bob is Lθ̇. That of the lower bob has two components — the velocity Lθ̇

of its point of support, and the velocity lϕ̇ relative to that point. The

angle between these is ϕ− θ. Hence the kinetic energy is

T = 1
2ML2θ̇2 + 1

2m[L2θ̇2 + l2ϕ̇2 + 2Llθ̇ϕ̇ cos(ϕ− θ)].

For small values of θ and ϕ, we may approximate cos(ϕ− θ) by 1. Since

there is a term in θ̇ϕ̇, these co-ordinates are not orthogonal, but we can

make them so by adding an appropriate multiple of ϕ to θ, or, equally

well, of θ to ϕ. In fact, it is easy to see physically that a pair of orthogonal

co-ordinates is provided by the displacements of the two bobs, which for

small angles are

x = Lθ, y = Lθ + lϕ. (11.5)
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In terms of these, T becomes

T = 1
2Mẋ2 + 1

2mẏ
2. (11.6)

To complete the reduction to the standard form (11.4), we may define

the new co-ordinates

q1 =
√
Mx, q2 =

√
my. (11.7)

In practice, this is not always essential, though it makes the discussion

of the general case much easier.

11.2 Equations of Motion for Small Oscillations

Now let us consider the potential energy function V . With T given by

(11.4), the equations of motion are simply

q̈α = − ∂V

∂qα
, for α = 1, 2, . . . , n. (11.8)

Thus the condition for equilibrium is that all n partial derivatives of V

should vanish at the equilibrium position.

For small values of the co-ordinates, we can expand V as a series, just

as we did for a single co-ordinate in §2.2. For example, for n = 2,

V = V0 + (b1q1 + b2q2) + (1
2k11q

2
1 + k12q1q2 + 1

2k22q
2
2) + · · · .

The equilibrium conditions require that the linear terms should be zero,

b1 = b2 = 0, just as in §2.2. Moreover, the constant term V0 is arbitrary,

and may be set equal to zero without changing the equations of motion.

Thus the leading terms are the quadratic ones, and for small values of q1
and q2, we may approximate V by

V = 1
2k11q

2
1 + k12q1q2 + 1

2k22q
2
2 . (11.9)

Then the equations of motion (11.8) become

q̈1 = −k11q1 − k12q2,

q̈2 = −k21q1 − k22q2,
(11.10)

where for the sake of symmetry we have written k21 = k12 in the second

equation.
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In the general case, V may be taken to be a homogeneous quadratic

function of the co-ordinates, which can be written

V =
n
∑

α=1

n
∑

β=1

1
2kαβqαqβ , (11.11)

with kβα = kαβ . (Notice that each term with α �= β appears twice, for

example 1
2k12q1q2 and 1

2k21q2q1, which are of course equal.) Then the

equations of motion are

q̈α = −
n
∑

β=1

kαβqβ , for α = 1, 2, . . . , n, (11.12)

or, in matrix notation,

⎡

⎢

⎢

⎢

⎣

q̈1
q̈2
...

q̈n

⎤

⎥

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎢

⎣

k11 k12 . . . k1n

k21 k22 . . . k2n

...
...

...

kn1 kn2 . . . knn

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

q1
q2
...

qn

⎤

⎥

⎥

⎥

⎦

. (11.13)

Example: Equations of motion of the double pendulum

Find the equations of motion of the double pendulum, in terms

of the orthogonal co-ordinates x and y.

The potential energy of the double pendulum is easily seen to be

V = (M +m)gL(1 − cos θ) +mgl(1 − cosϕ).

For small angles, we may approximate (1−cos θ) by 1
2θ

2. Hence in terms

of x and y, we have

V = 1
2 (M +m)gLθ2 + 1

2mglϕ
2 =

(M +m)g

2L
x2 +

mg

2l
(y − x)2.

Thus the equations of motion are

⎡

⎣

Mẍ

mÿ

⎤

⎦ =

⎡

⎢

⎣

− (M +m)g

L
− mg

l

mg

l
mg

l
−mg

l

⎤

⎥

⎦

⎡

⎣

x

y

⎤

⎦ . (11.14)

Note the appearance of the masses on the left hand side, because we

have not gone over to the normalized variables of (11.7).
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11.3 Normal Modes

The general solution of a pair of second-order differential equations like

(11.14) must involve four arbitrary constants, which may be fixed by the

initial values of q1, q2, q̇1, q̇2. Similarly, the general solution of (11.13) must

involve 2n arbitrary constants. To find the general solution, we adopt a

generalization of the method used for the damped harmonic oscillator in

§2.5: we look first for solutions in which all the co-ordinates are oscillating

with the same frequency ω, of the form

qα = Aαeiωt, (11.15)

where the Aα are complex constants. (As in §2.3 and §2.5, the physical

solution may be taken to be the real part of (11.15).) Such solutions are

called normal modes of the system.

Substituting (11.15) into (11.13), we obtain a set of n simultaneous

equations for the n amplitudes An,

−ω2Aα = −
n
∑

β=1

kαβAβ . (11.16)

Let us consider first the case n = 2. Then these equations are

[

k11 k12

k21 k22

] [

A1

A2

]

= ω2

[

A1

A2

]

. (11.17)

This is what is known as an eigenvalue equation. The values of ω2 for which

non-zero solutions exist are called the eigenvalues of the 2× 2 matrix with

elements kαβ . The column vector formed by the Aα is an eigenvector of

the matrix.

The equations (11.17) can alternatively be written as

[

k11 − ω2 k12

k21 k22 − ω2

][

A1

A2

]

=

[

0

0

]

.

These equations have a non-zero solution if and only if the determinant of

the coefficient matrix vanishes, i.e., if and only if

∣

∣

∣

∣

k11 − ω2 k12

k21 k22 − ω2

∣

∣

∣

∣

= (k11 − ω2)(k22 − ω2) − k2
12 = 0. (11.18)
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This is called the characteristic equation for the system. It determines

the frequencies ω of the normal modes, which are the square roots of the

eigenvalues ω2.

Equation (11.18) is a quadratic equation for ω2. Its discriminant may

be written (k11 − k22)
2 + 4k2

12, which is clearly positive. Hence it always

has two real roots. The condition for stability is that both roots should be

positive. A negative root, say −γ2, would yield a solution of the form

qα = Aαeγt +Bαe−γt,

where both the Aα and the Bα coefficients constitute eigenvectors of the

2×2 matrix, corresponding to the eigenvalue −γ2. Except in the degenerate

case of two equal eigenvalues, this means that the Aα and Bα coefficients

must be proportional, since the eigenvector is unique up to an overall factor.

In general, therefore, the solution yields an exponential increase in the

displacements with time.

This stability condition, that all the eigenvalues be positive, is a natural

generalization of the requirement, in the one-dimensional case, that the

second derivative of the potential energy function be positive (see §2.2).

If ω2 is chosen equal to one of the two roots of (11.18), then either of

the two equations in (11.17) fixes the ratio A1/A2. Since the coefficients

are real numbers, the ratio is obviously real. (This is a special case of a

general theorem about symmetric matrices — those satisfying kβα = kαβ .

See §A.10.) This means that A1 and A2 have the same phase (or phases

differing by π), so that q1 and q2 not only oscillate with the same frequency,

but actually in (or directly out of) phase. The ratio of q1 to q2 remains

fixed throughout the motion.

There remains in A1 and A2 a common arbitrary complex factor, which

serves to fix the overall amplitude and phase of the normal mode solution.

Thus each normal mode solution contains two arbitrary real constants.

Since the equations of motion (11.10) are linear, any superposition of

solutions is again a solution. Hence the general solution is simply a super-

position of the two normal mode solutions. If ω2 and ω′2 are the roots of

(11.18), it may be written as the real part of

q1 = A1e
iωt +A′

1e
iω′t,

q2 = A2e
iωt +A′

2e
iω′t,

(11.19)

in which the ratios A1/A2 and A′
1/A

′
2 are fixed by (11.17).
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Example: Normal modes of the double pendulum

Find the normal mode frequencies of the double pendulum.

Here the equations (11.17) may be written
⎡

⎢

⎣

(M +m)g

ML
+
mg

Ml
−mg
Ml

−g
l

g

l

⎤

⎥

⎦

⎡

⎣

Ax

Ay

⎤

⎦ = ω2

⎡

⎣

Ax

Ay

⎤

⎦ . (11.20)

The characteristic equation (11.18) simplifies to

ω4 − M +m

M

( g

L
+
g

l

)

ω2 +
M +m

M

g2

Ll
= 0. (11.21)

The roots of this equation determine the frequencies of the two normal

modes.

It is interesting to examine special limiting cases. First, let us suppose

that the upper pendulum is very heavy (M 	 m). Then, provided that l is

not too close to L, the two roots, with the corresponding ratios determined

by (11.20), are, approximately

ω2 ≈ g

l
,

Ax
Ay

≈ m

M

L

l − L
,

and

ω2 ≈ g

L
,

Ax
Ay

≈ L− l

L
.

In the first mode, the upper pendulum is practically stationary, while the

lower is swinging with its natural frequency. In the second mode, whose

frequency is that of the upper pendulum, the amplitudes are comparable.

At the other extreme, if M � m, the two normal modes are

ω2 ≈ g

L+ l
,

Ax
Ay

≈ L

L+ l
,

and

ω2 ≈ m

M

( g

L
+
g

l

)

,
Ax
Ay

≈ −m

M

L+ l

L
.

In the first mode, the pendulums swing almost like a single rigid pendulum

of length L + l. In the second, the lower bob remains almost stationary,

while the upper one executes a very rapid oscillation.
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The normal modes of a system with n degrees of freedom may be found

by a very similar method. The condition for consistency of the simultaneous

equations (11.16) is again that the determinant of the coefficients should

vanish. For example, for n = 3, we require

∣

∣

∣

∣

∣

∣

k11 − ω2 k12 k13

k21 k22 − ω2 k23

k31 k32 k33 − ω2

∣

∣

∣

∣

∣

∣

= 0. (11.22)

This is a cubic equation for ω2. It can be proved that its three roots are

all real (see §A.10). As before, the condition for stability is that all three

roots should be positive. The roots then determine the frequencies of the

three normal modes.

For each normal mode, the ratios of the amplitudes are fixed by the

equations (11.16). As in the case n = 2, these ratios are all real, so that in

a normal mode all the co-ordinates oscillate in phase (or 180◦ out of phase).

Each normal mode solution involves just two arbitrary real constants, and

the general solution is a superposition of all the normal modes.

11.4 Coupled Oscillators

One often encounters examples of physical systems that may be described as

two (or more) harmonic oscillators, which are approximately independent,

but with some kind of relatively weak coupling between the two. (As a

specific example, we shall consider below the system shown in Fig. 11.2,

which consists of a pair of identical pendulums coupled by a spring.)

If the co-ordinate q of a harmonic oscillator is normalized so that T =
1
2 q̇

2, then V = 1
2ω

2q2, where ω is the angular frequency. Hence for a pair

of uncoupled oscillators, the coefficients in (11.10) are

k11 = ω2
1 , k12 = 0, k22 = ω2

2.

When the oscillators are weakly coupled, these equalities will still be ap-

proximately true, so that in particular k12 is small in comparison to k11

and k22. Thus from (11.18) it is clear that the characteristic frequencies

of the system are given by ω2 ≈ k11 and ω2 ≈ k22; as one might expect,

they are close to the frequencies of the uncoupled oscillators. Then from

(11.17) we see that, in the first normal mode, the ratio A2/A1 is approx-

imately k12/(k11 − k22). Thus, unless the frequencies of the two normal

modes are nearly equal, the normal modes differ very little from those of
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the uncoupled system, and the coupling is not of great importance. The

interesting case, in which even a weak coupling can be important, is that

in which the two frequencies are equal, or nearly so.

As a specific example of this case, we consider a pair of pendulums, each

of mass m and length l, coupled by a weak spring (see Fig. 11.2). We shall

l l

m m

x y

Fig. 11.2

use the displacements x and y as generalized co-ordinates. Then, in the

absence of coupling, the potential energy is approximately 1
2mω

2
0(x

2 + y2),

where ω2
0 = g/l gives the free oscillation frequency. For small values of x

and y, the potential energy of the spring has the form 1
2k(x − y)2. It will

be convenient to introduce another frequency, ωs defined by ω2
s = k/m. In

fact, ωs is the angular frequency of the spring if one end is held fixed and

the other attached to a mass m. Thus we take

T = 1
2m(ẋ2 + ẏ2), V = 1

2m(ω2
0 + ω2

s )(x
2 + y2) −mω2

sxy. (11.23)

The normal mode equations now read

[

ω2
0 + ω2

s −ω2
s

−ω2
s ω2

0 + ω2
s

] [

Ax
Ay

]

= ω2

[

Ax
Ay

]

. (11.24)

The two solutions of the characteristic equation are easily seen to be

ω2 = ω2
0 with Ax/Ay = 1,

ω2 = ω2
0 + 2ω2

s with Ax/Ay = −1.
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In the first normal mode, the two pendulums oscillate together in

phase, with equal amplitude (see Fig. 11.3(a)). Since the spring is nei-

ther expanded nor compressed in this motion, it is not surprising that the

frequency is just that of the uncoupled pendulums. In the second normal

mode, which has a somewhat higher frequency, the pendulums swing in

opposite directions, alternately expanding and compressing the spring (see

Fig. 11.3(b)).

(a)

(b)

Fig. 11.3

The general solution is a superposition of these two normal modes, and

may be written as the real part of

x = Aeiω0t +A′eiω′t,

y = Aeiω0t −A′eiω′t,
(11.25)

where ω′2 = ω2
0 + 2ω2

s . The constants A and A′ may be determined by the

initial conditions.

Example: Motion of coupled pendulums

Find the solution for the positions of the bobs if the system is

released from rest with one bob displaced a distance a from its

equilibrium position. Describe the motion.



264 Classical Mechanics

Here, at t = 0, we have x = a, y = 0, ẋ = 0, ẏ = 0, whence we find

A = A′ = a/2, so the solution is

x = 1
2a cosω0t+ 1

2a cosω′t = a cosω−t cosω+t,

y = 1
2a cosω0t− 1

2a cosω′t = a sinω−t sinω+t,

where ω± = 1
2 (ω′ ± ω0), and we have used standard trigonometric iden-

tities.

Since the spring is weak, ω′ is only slightly greater than ω0, and

therefore ω− � ω+. We have beats between two nearly equal frequen-

cies. Thus we may describe the motion as follows. Initially, the first

spring swings with angular frequency ω+ and gradually decreasing am-

plitude, a cosω−t. Meanwhile, the second pendulum starts to swing with

the same angular frequency, but 90◦ out of phase, and with gradually in-

creasing amplitude a sinω−t. After a time π/2ω−, the first pendulum has

come momentarily to rest, and the second is oscillating with amplitude

a. Then its amplitude starts to decrease, while the first increases again.

The whole process is then repeated indefinitely (though in practice there

will of course be some damping).

This behaviour should be contrasted with that of a pair of coupled

oscillators of very different frequencies. In such a case, if one is started

oscillating, one of the two normal modes will have a much larger amplitude

than the other. Thus only a very small oscillation will be set up in the

second oscillator, and the amplitude of the first will be practically constant.

Normal co-ordinates

The two normal modes of this system (or the n normal modes in the general

case) are completely independent. We can make this fact explicit by intro-

ducing new ‘normal’ co-ordinates. In the case of the coupled pendulums,

we introduce, in place of x and y, the new co-ordinates

q1 =

√

m

2
(x+ y), q2 =

√

m

2
(x− y). (11.26)

In terms of these co-ordinates, the solution (11.25) is

q1 = A1e
iω0t, A1 =

√
2mA,

q2 = A2e
iω′t, A2 =

√
2mA′.

(11.27)
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Thus, in each normal mode, one co-ordinate only is oscillating. Co-

ordinates with this property are called normal co-ordinates.

The independence of the two normal co-ordinates may also be seen

by examining the Lagrangian function. From (11.23) and (11.26), we

find

T = 1
2 q̇

2
1 + 1

2 q̇
2
2 , V = 1

2ω
2
0(q

2
1 + q22) + ω2

s q
2
2 ,

whence the Lagrangian function is

L = 1
2 (q̇21 − ω2

0q
2
1) + 1

2 (q̇22 − ω′2q22). (11.28)

In effect, we have reduced the Lagrangian to that for a pair of uncoupled

oscillators, with angular frequencies ω0 and ω′.
The normal co-ordinates are very useful in studying the effect on the

system of a prescribed external force.

Example: Forced oscillation of coupled pendulums

Find the amplitudes of forced oscillations of the coupled pen-

dulums if one of them is subjected to a periodic force F (t) =

F1 cosω1t.

We write the force as the real part of F1e
iω1t. To find the equations

of motion in the presence of this force, we must evaluate the work done

in a small displacement (see §10.2). This is

F (t)δx =
F (t)√

2m
(δq1 + δq2).

Hence the equations of motion are

q̈1 = −ω2
0q1 +

F1e
iω1t

√
2m

,

q̈2 = −ω′2q2 +
F1e

iω1t

√
2m

.

(11.29)

These independent oscillator equations may be solved exactly as in

§2.6. In particular, the amplitudes of the forced oscillations are given

by

A1 =
F1/

√
2m

ω2
0 − ω2

1

, A2 =
F1/

√
2m

ω′2 − ω2
1

.
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The corresponding forced oscillation amplitudes for x and y are found

by solving (11.26), and are

Ax =
A1 +A2√

2m
, Ay =

A1 −A2√
2m

.

Note that if the forcing frequency is very close to ω0, the first normal

mode will predominate, and the pendulums will swing in the same di-

rection; while if it is close to ω′ the second will be more important. (Of

course, we should really include the effects of damping, so that the am-

plitudes do not become infinite at resonance, and so that transient effects

disappear in time.)

11.5 Oscillations of Particles on a String

Consider a light string of length (n + 1)l, stretched to a tension F , with

n equal masses m placed along it at regular intervals l. We shall con-

sider transverse oscillations of the particles, and use as our generalized

co-ordinates the displacements y1, y2, . . . , yn. (See Fig. 11.4, drawn for the

case n = 3.) Since the kinetic energy is

l l l l

y y y1 2 3

Fig. 11.4

T = 1
2m(ẏ2

1 + ẏ2
2 + · · · + ẏ2

n), (11.30)

these co-ordinates are orthogonal.

Next, we must calculate the potential energy. Let us consider the length

of string between the jth and (j + 1)th particles. In equilibrium, its length

is l, but when the particles are displaced it is

l+ δl =
√

l2 + (yj+1 − yj)2 ≈ l

[

1 +
(yj+1 − yj)

2

2l2

]

,

assuming the displacements are small. This calculation also applies to the

segments of string at each end, provided we set y0 = yn+1 = 0. The work

done against the tension in increasing the length of the string to this extent
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is Fδl. Hence, adding the contributions from each segment of string, we

find that the potential energy is

V =
F

2l

[

y2
1 + (y2 − y1)

2 + · · · + (yn − yn−1)
2 + y2

n

]

. (11.31)

It is worth noting that the potential energy of a continuous string may be

obtained as a limiting case, as n→ ∞ and l → 0. For small l, (yj+1−yj)2/l2
is approximately y′2, so we recover the expression (10.32).

From (11.30) and (11.31), we find that Lagrange’s equations are

ÿ1 =
F

ml
(−2y1 + y2),

ÿ2 =
F

ml
(y1 − 2y2 + y3),

...

ÿn =
F

ml
(yn−1 − 2yn).

(11.32)

It will be convenient to write ω2
0 = F/ml. Then, substituting the normal

mode solution yj = Aje
iωt, we obtain the equations

⎡

⎢

⎢

⎢

⎢

⎢

⎣

2ω2
0 −ω2

0 0 . . . 0

−ω2
0 2ω2

0 −ω2
0 . . . 0

0 −ω2
0 2ω2

0 . . . 0
...

...
...

...

0 0 0 . . . 2ω2
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

A1

A2

A3

...

An

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= ω2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

A1

A2

A3

...

An

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (11.33)

Let us look at the first few values of n. For n = 1, there is of course just

one normal mode, with ω2 = 2ω2
0. For n = 2, the characteristic equation is

(2ω2
0 − ω2)2 − ω4

0 = 0,

and we obtain two normal modes:

ω2 = ω2
0 , A1/A2 = 1,

ω2 = 3ω2
0 , A1/A2 = −1.

Now consider n = 3. The characteristic equation here is

∣

∣

∣

∣

∣

∣

2ω2
0 − ω2 −ω2

0 0

−ω2
0 2ω2

0 − ω2 −ω2
0

0 −ω2
0 2ω2

0 − ω2

∣

∣

∣

∣

∣

∣

= 0. (11.34)
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Expanding this determinant by the usual rules, we obtain a cubic equation

for ω2:

(2ω2
0 − ω2)3 − 2ω4

0(2ω
2
0 − ω2) = 0.

The roots of this equation are 2ω2
0 and (2 ± √

2)ω2
0 . Hence we obtain the

three normal modes

ω2 = (2 −√
2)ω2

0 , A1 : A2 : A3 = 1 :
√

2 : 1;

ω2 = 2ω2
0, A1 : A2 : A3 = 1 : 0 : −1;

ω2 = (2 +
√

2)ω2
0 , A1 : A2 : A3 = 1 : −√

2 : 1.

These normal modes are illustrated in Fig. 11.5.

Fig. 11.5

Higher values of n may be treated similarly. For n = 4, the character-

istic equation requires the vanishing of a 4× 4 determinant, which may be

expanded by similar rules to yield

(2ω2
0 − ω2)4 − 3ω4

0(2ω
2
0 − ω2)2 + ω8

0 = 0.

The roots of this equation are given by

(2ω2
0 − ω2)2 =

3 ±√
5

2
ω4

0 =

(√
5 ± 1

2
ω2

0

)2

.
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Thus we obtain the four normal modes:

ω2 = 0.38ω2
0, A1 : A2 : A3 : A4 = 1 : 1.62 : 1.62 : 1;

ω2 = 1.38ω2
0, A1 : A2 : A3 : A4 = 1.62 : 1 : −1 : −1.62;

ω2 = 2.62ω2
0, A1 : A2 : A3 : A4 = 1.62 : −1 : −1 : 1.62;

ω2 = 3.62ω2
0, A1 : A2 : A3 : A4 = 1 : −1.62 : 1.62 : −1.

(See Fig. 11.6.)

Fig. 11.6

For every value of n, the slowest mode is the one in which all the masses

are oscillating in the same direction, while the fastest is one in which al-

ternate masses oscillate in opposite directions. For large values of n, the

normal modes approach those of a continuous stretched string, which we

discuss in the following section.

11.6 Normal Modes of a Stretched String

We now wish to discuss the problem treated in §10.6 from the point of view

of normal modes. We start from the equations of motion, (10.36),

ÿ = c2y′′, c2 = F/µ, (11.35)
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and look for normal mode solutions of the form

y(x, t) = A(x)eiωt. (11.36)

Substituting in (11.35), we obtain

A′′(x) + k2A(x) = 0, k = ω/c.

Thus, in place of a set of simultaneous equations for the amplitudes Aj , we

obtain a differential equation for the amplitude function A(x).

The general solution of this equation is

A(x) = a cos kx+ b sin kx.

However, because the ends of the string are fixed, we must impose the

boundary conditions A(0) = A(l) = 0. (Note that l here is the full length

of the string, denoted by (n + 1)l in the preceding section.) Thus a = 0

and moreover sin kl = 0. The possible values of k are

k =
nπ

l
, n = 1, 2, 3, . . . . (11.37)

Each of these values corresponds to a normal mode of the string. The

corresponding angular frequencies are

ω =
nπc

l
, n = 1, 2, 3, . . . . (11.38)

Note that they are all multiples of the fundamental frequency

ω1 =
πc

l
= π

√

F

Ml
,

where M is the total mass of the string.

The solution for the nth normal mode can be written as

y(x, t) = Re
(

Ane
inπct/l

)

sin
nπx

l
, (11.39)

where An is an arbitrary complex constant. It represents a ‘standing wave’

of wavelength 2l/n, with n− 1 nodes, or points where y = 0. The first few

normal modes are illustrated in Fig. 11.7.

The general solution for the stretched string is a superposition of all

the normal modes (11.39). It is easy to establish the connection with the

general solution (10.37) obtained in the previous chapter. According to
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n = 1

n = 2

n = 3

n = 4

Fig. 11.7

(10.38), f(x) is a periodic function of x, with period 2l. Hence it may be

expanded in a Fourier series (see Eq. (2.45)),

f(x) =

+∞
∑

n=−∞
fne

inπx/l.

Thus the solution (10.37) is

y(x, t) =

+∞
∑

n=−∞
fn

(

einπ(ct+x)/l − einπ(ct−x)/l
)

=

+∞
∑

n=−∞
2ifne

inπct/l sin
nπx

l
.

Now recall that fn and f−n must be complex conjugates (so that the two

terms add to give a real contribution to y). Thus we may restrict the sum

to positive values of n. (Note that there is no contribution from n = 0

because the sine function then vanishes.) If we define An = 2ifn, we can

write the solution as

y(x, t) = 2Re

+∞
∑

n=1

Ane
inπct/l sin

nπx

l
.
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11.7 Summary

Near a position of equilibrium of any natural, conservative system, the ki-

netic energy may be taken to be a homogeneous quadratic function of the

q̇α, with constant coefficients, and the potential energy to be a homoge-

neous quadratic function of the qα. We can always find a set of orthogonal

co-ordinates, in terms of which T is reduced to a sum of squares. Lagrange’s

equations then take on a simple form. To find the normal modes of oscilla-

tion, we substitute solutions of the form qα = Aαeiωt, and obtain a set of

simultaneous linear equations for the coefficients. The condition for con-

sistency of these equations is the characteristic equation, which determines

the frequencies of the normal modes. The stability condition is that all the

roots of this equation for ω2 should be positive.

The problem of finding the normal modes is equivalent to that of find-

ing normal co-ordinates, which reduce not only T but also V to a sum of

squares. In terms of normal co-ordinates, the system is reduced to a set

of uncoupled harmonic oscillators, whose frequencies are the characteristic

frequencies of the system. The general solution to the equations of motion

is a superposition of all the normal modes. In it, each normal co-ordinate is

oscillating at its own frequency, and with amplitude and phase determined

by the initial conditions.

The linearized analysis of small amplitude oscillations near to a position

of stable equilibrium in the form of normal modes is a technique which is

applicable generally. For some systems, which are special but important,

the idea of a normal mode may be generalized. Such systems may then

be analyzed as a combination of ‘nonlinear’ normal modes, where no small

amplitude approximation needs to be made — see §14.1.

Problems

1. A double pendulum, consisting of a pair, each of mass m and length

l, is released from rest with the pendulums displaced but in a straight

line. Find the displacements of the pendulums as functions of time.

2. Find the normal modes of a pair of coupled pendulums (like those of

Fig. 11.2) if the two are of different masses M and m, but still the same

length l. Given that the pendulum of massM is started oscillating with

amplitude a, find the maximum amplitude of the other pendulum in
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the subsequent motion. Does the amplitude of the first pendulum ever

fall to zero?

3. A spring of negligible mass, and spring constant (force/extension) k,

supports a mass m, and beneath it a second, identical spring, carry-

ing a second, identical mass. Using the vertical displacements x and

y of the masses from their positions with the springs unextended as

generalized co-ordinates, write down the Lagrangian function. Find

the position of equilibrium, and the normal modes and frequencies of

vertical oscillations.

4. Three identical pendulums are coupled, as in Fig. 11.2, with springs

between the first and second and between the second and third. Find

the frequencies of the normal modes, and the ratios of the amplitudes.

5. The first of the three pendulums of Problem 4 is initially displaced a

distance a, while the other two are vertical. The system is released from

rest. Find the maximum amplitudes of the second and third pendulums

in the subsequent motion.

6. Three identical springs, of negligible mass, spring constant k, and nat-

ural length a are attached end-to-end, and a pair of particles, each

of mass m, are fixed to the points where they meet. The system is

stretched between fixed points a distance 3l apart (l > a). Find the

frequencies of normal modes of (a) longitudinal, and (b) transverse

oscillations.

7. *A bead of mass m slides on a smooth circular hoop of mass M and

radius a, which is pivoted at a point on its rim so that it can swing

freely in its plane. Write down the Lagrangian in terms of the angle of

inclination θ of the diameter through the pivot and the angular position

ϕ of the bead relative to a fixed point on the hoop. Find the frequencies

of the normal modes, and sketch the configuration of hoop and bead at

the extreme point of each.

8. *The system of Problem 7 is released from rest with the centre of the

hoop vertically below the pivot and the bead displaced by a small angle

ϕ0. Given that M = 8m and that 2a is the length of a simple pendulum

of period 1 s, find the angular displacement θ of the hoop as a function

of time. Determine the maximum value of θ in the subsequent motion,

and the time at which it first occurs.

9. A simple pendulum of mass m, whose period when suspended from a

rigid support is 1 s, hangs from a supporting block of mass 2m which

can move along a horizontal line (in the plane of the pendulum), and

is restricted by a harmonic-oscillator restoring force. The period of the
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oscillator (with the pendulum removed) is 0.1 s. Find the periods of the

two normal modes. When the pendulum bob is swinging in the slower

mode with amplitude 100mm, what is the amplitude of the motion of

the supporting block?

10. *The system of Problem 9 is initially at rest, and the pendulum bob is

given an impulsive blow which starts it moving with velocity 0.5m s−1.

Find the position of the support as a function of time in the subsequent

motion.

11. *A particle of charge q and mass m is free to slide on a smooth hor-

izontal table. Two fixed charges q are placed at ±aj, and two fixed

charges 12q at ±2ai. Find the electrostatic potential near the origin

(see §6.2). Show that this is a position of stable equilibrium, and find

the frequencies of the normal modes of oscillation near it.

12. *A rigid rod of length 2a is suspended by two light, inextensible strings

of length l joining its ends to supports also a distance 2a apart and

level with each other. Using the longitudinal displacement x of the

centre of the rod, and the transverse displacements y1, y2 of its ends,

as generalized co-ordinates, find the Lagrangian function (for small

x, y1, y2). Determine the normal modes and frequencies. (Hint : First

find the height by which each end is raised, the co-ordinates of the

centre of mass and the angle through which the rod is turned.)

13. *Each of the pendulums in Fig 11.2 is subjected to a damping force, of

magnitude αẋ and αẏ respectively, while there is a damping force β(ẋ−
ẏ) in the spring. Show that the equations for the normal co-ordinates q1
and q2 are still uncoupled. Find the amplitudes of the forced oscillations

obtained by applying a periodic force to one pendulum. Given that the

forcing frequency is that of the uncoupled pendulums, and that β is

negligible, find the range of values of α for which the amplitude of the

second pendulum is less than half that of the first.

14. *Show that a stretched string is equivalent mathematically to an infinite

number of uncoupled oscillators, described by the co-ordinates

qn(t) =

√

2

l

∫ l

0

y(x, t) sin
nπx

l
dx.

Determine the amplitudes of the various normal modes in the motion

described in Chapter 10, Problem 14. Why, physically, are the modes

for even values of n not excited?

15. Show that a typical equation of the set (11.33) may be satisfied by

setting Aα = sinαk (α = 1, 2, . . . , n), provided that ω = 2ω0 sin 1
2k.
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Hence show by considering the required condition when α = n + 1

that the frequencies of the normal modes are ωr = 2ω0 sin[rπ/2(n+1)],

with r = 1, 2, . . . , n. Why may we ignore values of r greater than n+1?

Show that, in the limit of large n, the frequency of the rth normal mode

tends to the corresponding frequency of the continuous string with the

same total length and mass.

16. A particle moves under a conservative force with potential energy V (r).

The point r = 0 is a position of equilibrium, and the axes are so chosen

that x, y, z are normal co-ordinates. Show that, if V satisfies Laplace’s

equation, ∇2V = 0 (see §6.7), then the equilibrium is necessarily unsta-

ble, and hence that stable equilibrium under purely gravitational and

electrostatic forces is impossible. (Of course, dynamic equilibrium —

stable periodic motion — can occur. Note also that the two-dimensional

stable equilibrium of Problem 11 does not contradict this result because

there is another force imposed, confining the charge to the horizontal

plane.)
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Chapter 12

Hamiltonian Mechanics

We have already seen, in several examples, the value of the Lagrangian

method, which allows us to find equations of motion for any system in

terms of an arbitrary set of generalized co-ordinates. In this chapter, we

shall discuss an extension of the method, due to Hamilton. Its principal

feature is the use of the generalized momenta p1, p2, . . . , pn in place of

the generalized velocities q̇1, q̇2, . . . , q̇n. It is particularly valuable when,

as often happens, some of the generalized momenta are constants of the

motion. More generally, it is well suited to finding conserved quantities,

and making use of them.

12.1 Hamilton’s Equations

The Lagrangian function L for a natural system is a function of q1, q2, . . . , qn
and q̇1, q̇2, . . . , q̇n. For brevity, we shall indicate this dependence by writing

L(q, q̇), where q stands for all the generalized coordinates, and q̇ for all their

time derivatives.

Lagrange’s equations may be written in the form

ṗα =
∂L

∂qα
, (12.1)

where the generalized momenta are defined by

pα =
∂L

∂q̇α
. (12.2)

Here and in the following equations, α runs over 1, 2, . . . , n.

The instantaneous position and velocity of every part of our system

may be specified by the values of the 2n variables q and q̇. However, we

277
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can alternatively solve the equations (12.2) for the q̇ in terms of q and p,

obtaining, say,

q̇α = q̇α(q, p), (12.3)

so the 2n variables q and p also serve equally well to specify the instanta-

neous position and velocity of every particle.

For example, for a particle moving in a plane, and described by polar co-

ordinates, the generalized momenta are given by pr = mṙ and pθ = mr2θ̇.

In this case, Eqs. (12.3) read

ṙ =
pr
m
, θ̇ =

pθ
mr2

. (12.4)

The instantaneous position and velocity of the particle may be fixed by the

values of r, θ, pr and pθ.

We now define a function of q and p, the Hamiltonian function, by

H(q, p) =

n
∑

β=1

pβ q̇β(q, p) − L(q, q̇(q, p)). (12.5)

Next, we compute the derivatives of H with respect to its 2n independent

variables. We differentiate first with respect to pα. One term in this deriva-

tive is the coefficient of pα in the sum
∑

pq̇, namely q̇α. Other terms arise

from the dependence of each q̇β , either in the sum or as an argument of L,

on pα. Altogether, we obtain

∂H

∂pα
= q̇α +

n
∑

β=1

pβ
∂q̇β
∂pα

−
n
∑

β=1

∂L

∂q̇β

∂q̇β
∂pα

.

Now, by (12.2), the second and third terms cancel. Hence we are left with

∂H

∂pα
= q̇α. (12.6)

We now examine the derivative with respect to qα. Again, there are two

kinds of terms, the term coming from the explicit dependence of L on qα,

and those from the dependence of each q̇β on qα. We find

∂H

∂qα
= − ∂L

∂qα
+

n
∑

β=1

pβ
∂q̇β
∂qα

−
n
∑

β=1

∂L

∂q̇β

∂q̇β
∂qα

.
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As before, the second and third terms cancel. Thus, using Lagrange’s

equations (12.1), we obtain

∂H

∂qα
= −ṗα. (12.7)

The equations (12.6) and (12.7) together constitute Hamilton’s equa-

tions. Note that whereas Lagrange’s equations are a set of n second-order

differential equations, Hamilton’s constitute a set of 2n first-order equa-

tions.

Let us consider, for example, a particle moving in a plane under a cen-

tral, conservative force.

Example: Central conservative force

Obtain Hamilton’s equations for a particle moving in a plane

with potential energy function V (r).

Here the Lagrangian is

L = 1
2mṙ

2 + 1
2mr

2θ̇2 − V (r).

Thus the Hamiltonian function is

H = (pr ṙ + pθ θ̇) − [ 12mṙ
2 + 1

2mr
2θ̇2 − V (r)],

or, using (12.4) to eliminate the velocities,

H =
p2
r

2m
+

p2
θ

2mr2
+ V (r). (12.8)

Note that this is the expression for the total energy, T + V . This is

no accident, but a general property of natural systems, as we shall see

below.

The first pair of Hamilton’s equation, (12.6), are

ṙ =
∂H

∂pr
=
pr
m
, θ̇ =

∂H

∂pθ
=

pθ
mr2

. (12.9)

They simply reproduce the relations (12.4) between velocities and mo-

menta. The second pair, (12.7), are

−ṗr =
∂H

∂r
= − p2

θ

mr3
+

dV

dr
, −ṗθ =

∂H

∂θ
= 0. (12.10)
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The second of these two equations yields the law of conservation of an-

gular momentum,

pθ = J = constant. (12.11)

The first gives the radial equation of motion,

ṗr = mr̈ =
J2

mr3
− dV

dr
.

It may be integrated to give what we termed the ‘radial energy equation’

(4.12) in Chapter 4.

12.2 Conservation of Energy

We saw in §10.1 that a natural system is characterized by the fact that

the kinetic energy contains no explicit dependence on the time, and is

a homogeneous quadratic function of the time derivatives q̇. This latter

condition may be expressed algebraically by the equation

n
∑

α=1

∂T

∂q̇α
q̇α = 2T.

For example, for n = 2, T has the form (11.1). Thus

∂T

∂q̇1
q̇1 +

∂T

∂q̇2
q̇2 = (a11q̇1 + a12q̇2)q̇1 + (a21q̇1 + a22q̇2)q̇2 = 2T.

Since pα = ∂T/∂q̇α, we therefore have

H =

n
∑

β=1

pβ q̇β − L =

n
∑

β=1

∂T

∂q̇β
q̇β − (T − V )

= 2T − (T − V ) = T + V.

Thus, for a natural system, the value of the Hamiltonian function is equal

to the total energy of the system.

For a forced system, the Lagrangian can sometimes be written, as we saw

in §10.4, in the form L = T ′ − V ′, where T ′ is a homogeneous quadratic

in the variables q̇, and V ′ is independent of them. In such a case, the

Hamiltonian function is equal to T ′ + V ′, which is in general not the total

energy.

Now let us examine the time derivative of H . We shall now allow for the

possibility that H may contain an explicit time dependence (as it does for
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some forced systems), and write H = H(q, p, t). Then the value of H varies

with time for two reasons: firstly, because of its explicit time dependence,

and, secondly, because the variables q and p are themselves functions of

time. Thus the total time derivative is

dH

dt
=
∂H

∂t
+

n
∑

α=1

∂H

∂qα
q̇α +

n
∑

α=1

∂H

∂pα
ṗα.

Now, if we express q̇ and ṗ in terms of derivatives of H , using Hamilton’s

equations (12.6) and (12.7), we obtain

dH

dt
=
∂H

∂t
+

n
∑

α=1

(

∂H

∂qα

∂H

∂pα
− ∂H

∂pα

∂H

∂qα

)

.

Obviously, the terms in parentheses cancel, whence

dH

dt
=
∂H

∂t
. (12.12)

This equation asserts that the value of H changes in time only because of

its explicit time dependence. The net change induced by the fact that q

and p vary with time is zero.

In particular, for a natural, conservative system, neither T nor V con-

tains any explicit dependence on the time. Thus ∂H/∂t = 0, and it follows

that

dH

dt
= 0. (12.13)

Thus there is a law of conservation of energy,

H = T + V = E = constant. (12.14)

In a forced system, if H = T ′ + V ′, and is time-independent, we again

have a conservation law — like (10.20) — though not for T + V .

Even when H is not of the form T ′ + V ′, an energy conservation law

may exist. The prime example of this is that of a charged particle moving

in static electric and magnetic fields E and B. Since the magnetic force

is perpendicular to ṙ, it does no work, and the sum of the kinetic and

electrostatic potential energies is a constant. It is interesting to see how

this emerges from the Hamiltonian formalism.
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Example: Particle in electric and magnetic fields

Find the Hamiltonian for a charged particle in electric and mag-

netic fields. Show that, if the fields are time-independent, there

is an energy conservation law.

We begin with the Lagrangian (10.27):

L = 1
2mṙ2 + qṙ · A(r, t) − qφ(r, t),

from which, as in (10.28), it follows that the generalized momentum is

p = mṙ + qA. Thus we find

H = p · ṙ − L =
(p − qA)2

2m
+ qφ. (12.15)

Now, if E and B are time-independent, it is possible to choose the

scalar and vector potentials φ and A also to be so (see §A.7). Thus H

has no explicit time-dependence, and therefore is conserved: H = E =

constant.

Note that in this case, L does have a term linear in ṙ: it has the

form L = L2 + L1 + L0, where Lk is of degree k in ṙ. In such a case, it

turns out that H = L2 − L0. The ‘magnetic’ term L1 apparently does

not appear. In fact, B appears in H only via the relation between ṙ and

p.

The Hamiltonian formalism is particularly well suited to finding conser-

vation laws, or constants of the motion. The conservation law for energy is

the first of a large class of conservation laws which we shall discuss in the

following sections.

12.3 Ignorable Co-ordinates

It sometimes happens that one of the generalized co-ordinates, say qα, does

not appear in the Hamiltonian function (though the corresponding momen-

tum, pα, does). In that case, the co-ordinate qα is said to be ignorable —

for a reason we shall explain in a moment.

For an ignorable co-ordinate, Hamilton’s equation (12.7) yields

−ṗα =
∂H

∂qα
= 0. (12.16)
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It leads immediately to a conservation law for the corresponding generalized

momentum,

pα = constant. (12.17)

For example, for a particle moving in a plane under a central, conservative

force, H is independent of the angular co-ordinate θ and we therefore have

the law of conservation of angular momentum, (12.11).

The term ‘ignorable co-ordinate’ means just what it says: that for many

purposes we can ignore the co-ordinate qα, and treat the corresponding pα
simply as a constant appearing in the Hamiltonian function. This is, in

effect, what we did for the central force problem in Chapter 4. Because of

the conservation law for angular momentum, we were able to deal with an

effectively one-dimensional problem involving only the radial co-ordinate r.

The generalized momentum pθ = J was simply a constant appearing in the

equation of motion or the energy conservation equation.

Let us re-examine this problem from the Hamiltonian point of view.

Since the Hamiltonian (12.8) is independent of θ, so θ is ignorable. Thus,

we may regard (12.8) as the Hamiltonian for a system with one degree of

freedom, described by the co-ordinate r and its corresponding momentum

pr, in which a constant pθ appears. It is identical with the Hamiltonian for a

particle moving in one dimension under a conservative force with potential

energy function

U(r) =
p2
θ

2mr2
+ V (r). (12.18)

This is precisely the ‘effective potential energy function’ of (4.13).

Hamilton’s equations for r and pr are

ṙ =
∂H

∂pr
=
pr
m
, −ṗr =

∂H

∂r
=

dU

dr
.

To solve the central force problem, we solve first this one-dimensional prob-

lem (for example, using its energy conservation equation, the ‘radial energy

equation’). Our solution gives us complete information about the radial

motion — it gives ṙ as a function of r, and therefore r as a function of t,

by integrating.

Any required information about the angular part of the motion can then

be found from the remaining pair of Hamilton’s equations, one of which is

the angular momentum conservation equation, ṗθ = 0, while the other gives

θ̇ in terms of pθ, in the form θ̇ = pθ/mr
2. Clearly, though we did not then
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introduce the Hamiltonian, this is essentially just the method we used in

Chapter 4.

We shall use the same method in the following section to discuss the

general motion of a symmetric top.

Example: The symmetric top

Show that for the symmetric top two of the three Euler angles are

ignorable co-ordinates, and find the ‘effective potential energy

function’ for the remaining co-ordinate.

We start from the Lagrangian function (10.11):

L = 1
2I1ϕ̇

2 sin2 θ + 1
2I1θ̇

2 + 1
2I3(ψ̇ + ϕ̇ cos θ)2 −MgR cos θ.

The corresponding generalized momenta are

pϕ = I1ϕ̇ sin2 θ + I3(ψ̇ + ϕ̇ cos θ) cos θ,

pθ = I1θ̇,

pψ = I3(ψ̇ + ϕ̇ cos θ).

Solving these equations for ϕ̇, θ̇, ψ̇, we obtain

ϕ̇ =
pϕ − pψ cos θ

I1 sin2 θ
,

θ̇ =
pθ
I1
, (12.19)

ψ̇ =
pψ
I3

− pϕ − pψ cos θ

I1 sin2 θ
cos θ.

The simplest way to construct the Hamiltonian function is to use the

fact that H = T +V , and express T in terms of the generalized momenta

using (12.19). In this way, we find

H =
(pϕ − pψ cos θ)2

2I1 sin2 θ
+

p2
θ

2I1
+
p2
ψ

2I3
+MgR cos θ. (12.20)

It is easy to verify that the first set of Hamilton’s equations, (12.6),

correctly reproduce (12.19).

It is clear that the two co-ordinates ϕ and ψ here are ignorable, and

there are two corresponding conservation laws, pϕ = constant and pψ =

constant. Thus the problem can be reduced to that of a system with one

degree of freedom only, described by the co-ordinate θ. The Hamiltonian
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function (12.20) may be written

H =
p2
θ

2I1
+ U(θ),

where the effective potential energy function U(θ) is

U(θ) =
(pϕ − pψ cos θ)2

2I1 sin2 θ
+
p2
ψ

2I3
+MgR cos θ. (12.21)

12.4 General Motion of the Symmetric Top

Hamilton’s equations for θ and pθ give

−I1θ̈ = −ṗθ =
∂H

∂θ
=

dU

dθ
. (12.22)

This is obviously a rather complicated equation to solve. However, the

qualitative features of the motion can be found from the energy conservation

equation,

p2
θ

2I1
+ U(θ) = E = constant. (12.23)

In particular, the angles θ at which θ̇ = 0 are given by the equation U(θ) =

E, and the motion is confined to the region where U(θ) ≤ E.

Now let us examine the function U(θ). We exclude for the moment the

special case where pϕ = ±pψ. (We return to this important special case in

the next section.) Then it is clear from (12.21) that as θ approaches either

0 or π, U(θ) → +∞. Hence it has roughly the form shown in Fig. 12.1,

with a minimum at some value of θ, say θ0, between 0 and π. It can be

shown that there is only one minimum (see Problem 7). When E is equal

to this minimum value, we have an ‘equilibrium’ situation, and θ remains

fixed at θ0. This corresponds to steady precession. For any larger value of

E, the angle θ oscillates between a minimum θ1 and a maximum θ2.

It is not hard to describe the motion of the top. We note that, according

to (12.19), the angular velocity of the axis about the vertical, ϕ̇, is zero when

cos θ = pϕ/pψ. If this angle lies outside the range between θ1 and θ2 (or

if |pϕ/pψ| > 1), then ϕ̇ never vanishes and the axis precesses round the

vertical in a fixed direction, and wobbles up and down between θ1 and θ2.
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θ θ θ θπ0 1 0 2

U

E

Fig. 12.1

This motion is illustrated in Fig. 12.2, which shows the track of the end of

the axis on a sphere.

θ

θ

1

2

Fig. 12.2

On the other hand, if θ1 < arccos(pϕ/pψ) < θ2, the axis moves in loops,

as shown in Fig. 12.3. The angular velocity has one sign near the top of

the loop, and the opposite near the bottom.

The limiting case between the two kinds of motion occurs when

arccos(pϕ/pψ) = θ1. Then the loops shrink to cusps, as shown in Fig. 12.4.

The axis of the top comes instantaneously to rest at the top of each loop.
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Fig. 12.3
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Fig. 12.4

This kind of motion will occur if the top is set spinning with its axis ini-

tially at rest. (It is impossible to have cusped motion with the cusps at the

bottom, for they correspond to points of minimum kinetic energy, and the

motion must always be below such points. A top set spinning with its axis

stationary cannot rise without increasing its energy.)
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It is easy to observe these kinds of motion using a small gyroscope. In

practice, because of frictional effects, the type of motion will change slowly

with time.

Example: Stability of a vertical top

A top is set spinning with angular velocity ω3 with its axis ver-

tical. How will it move?

If the axis of the top passes through the vertical, θ = 0, then it is

clear that U(0) must be finite. This is possible only if pϕ = pψ, and both

generalized momenta must be equal to I3ω3. (We could also consider

types of motion for which the axis passes through the downward vertical,

θ = π. In that case, we require pϕ = −pψ = −I3ω3. The treatment is

entirely similar — but less interesting because a downward-pointing top

is always stable.)

If we set pϕ = pψ = I3ω3, the effective potential energy function

(12.21) becomes

U(θ) =
I2
3ω

2
3

2I1
tan2 1

2θ + 1
2I3ω

2
3 +MgR cos θ, (12.24)

where we have used the identity (1 − cos θ)/ sin θ = tan 1
2θ.

For small values of θ, we may expand U(θ), and retain only the terms

up to order θ2, obtaining

U(θ) ≈ ( 1
2I3ω

2
3 +MgR) +

1

2

(

I2
3ω

2
3

4I1
−MgR

)

θ2. (12.25)

Since there is no linear term, θ = 0 is always a position of equilibrium.

It is a position of stable equilibrium if U(θ) has a minimum at θ = 0,

that is, if the coefficient of θ2 is positive. Thus there is a minimum value

of ω3 for which the vertical top is stable, given by

ω2
3 =

4I1MgR

I2
3

= ω2
0 , say. (12.26)

If the top is set spinning with angular velocity greater than this

critical value, it will remain vertical. When the angular velocity falls

below the critical value (as it eventually will, because of friction), the

top will begin to wobble. The energy of the vertical top is

E = 1
2I3ω

2
3 +MgR.
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Thus the angles at which θ̇ = 0 are given by U(θ) = E (see Fig. 12.5),

or, from (12.24), by

I2
3ω

2
3

2I1
tan2 1

2θ = MgR(1 − cos θ) = 2MgR sin2 1
2θ.

θ θπ0 2

U

E

Fig. 12.5

They are easily seen to be θ1 = 0 and θ2 = 2 arccos(ω3/ω0). Thus if

the top is set spinning with its axis vertical and almost stationary, with

angular velocity less than the critical value ω0, it will oscillate in the

subsequent motion between the vertical and the angle θ2. Note that

θ2 increases as ω3 is decreased, and tends to π as ω3 approaches zero.

When ω3 = 0, the top behaves like a compound pendulum, and swings

in a circle through both the upward and downward verticals.

12.5 Liouville’s Theorem

This theorem really belongs to statistical mechanics, but it is interesting

to consider it here because it is a very direct consequence of Hamilton’s

equations.

The instantaneous position and velocity of every particle in our system

is specified by the 2n variables (q1, . . . , qn, p1, . . . , pn). It is convenient to

think of these as co-ordinates in a 2n-dimensional space, called the phase

space of the system. Symbolically, we may write

r = (q1, . . . , qn, p1, . . . , pn).
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As time progresses, the changing state of the system can be described by

a curve r(t) in the phase space. Hamilton’s equations, (12.6) and (12.7),

prescribe the rates of change (q̇1, . . . , q̇n, ṗ1, . . . , ṗn). These may be regarded

as the components of a 2n-dimensional velocity vector,

v = ṙ = (q̇1, . . . , q̇n, ṗ1, . . . , ṗn).

Now suppose that we have a large number of copies of our system,

starting out with slightly different initial values of the co-ordinates and

momenta. For example, we may repeat many times an experiment on the

same system, but with small random variations in the initial conditions.

Each copy of the system is represented by a point in the phase space,

moving according to Hamilton’s equations. We thus have a swarm of points,

occupying some volume in phase space, rather like the particles in a fluid.

Liouville’s theorem concerns how this swarm moves. What it says is

a very simple, but very remarkable, result, namely that the representative

points in phase space move as though they formed an incompressible fluid.

The 2n-dimensional volume occupied by the swarm does not change with

time, though of course its shape may, and usually does, change in very

complicated ways.

To prove this, we need to apply a generalization of the divergence oper-

ation. In three dimensions, it is shown in Appendix A (see (A.24)) that the

fluid velocity in an incompressible fluid satisfies the condition ∇ ·v = 0. It

is easy to see that the argument generalizes to any number of dimensions.

The condition that the phase-space volume does not change with time in

the flow described by the velocity field v is simply that the 2n-dimensional

divergence of v is zero, i.e.,

∇ · v =
∂q̇1
∂q1

+ · · · + ∂q̇n
∂qn

+
∂ṗ1

∂p1
· · · + ∂ṗn

∂pn
= 0. (12.27)

But, by (12.6) and (12.7), the 1st and (n+1)st terms are

∂q̇1
∂q1

+
∂ṗ1

∂p1
=

∂

∂q1

(

∂H

∂p1

)

+
∂

∂p1

(

−∂H
∂q1

)

,

which is indeed zero. Similarly, all the other terms in (12.27) cancel in

pairs. Thus the theorem is proved.

In general, except for special cases, the motion in phase space is com-

plicated. The phase-space volume containing the swarm of representative

points maintains its volume, but becomes extremely distorted, rather like a

drop of immiscible coloured liquid in a glass of water which is then stirred.
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The points cannot just go anywhere in phase space, because of the en-

ergy conservation equation. They must remain on the same constant-energy

surface, H(q, p) = E, and of course there might be other conservation laws

that also restrict the accessible region of phase space. But one might ex-

pect that in time the phase-space volume would become thinly distributed

throughout almost all the accessible parts of phase space. Such behaviour

is called ergodic, and is commonly assumed in statistical mechanics. Aver-

aged properties of the system over a long time can then be estimated by

averaging over the accessible phase space.

Remarkably, however, many quite complicated systems do not behave

in this way, but show surprising almost-periodic behaviour, to be discussed

in Chapter 14. The study of which systems do and do not behave ergodi-

cally, and particularly the transition between one type and another as the

parameters of the system are varied, is now one of the most active fields of

mathematical physics. It has revealed an astonishing range of possibilities.

12.6 Symmetries and Conservation Laws

In §§12.2 and 12.3, we found some examples of conserved quantities, but so

far we have not discussed the physical reasons for their existence. In fact,

they are expressions of symmetry properties possessed by the system.

For example, the conservation law of angular momentum for the cen-

tral force problem, (12.11), arises from the fact that the Hamiltonian is

independent of θ. This is an expression of the rotational symmetry of the

system — in other words, of the fact that there is no preferred orientation

in the plane. Explicitly, the equation ∂H/∂θ = 0 means that the energy of

the system is unchanged if we rotate it to a new position, replacing θ by

θ+ δθ, without changing r, pr or pθ. Thus angular momentum is conserved

(pθ = constant) for systems possessing this rotational symmetry. Of course,

if the force is non-central, it does determine a preferred orientation is space,

and angular momentum is not conserved.

In a three-dimensional problem, every component of the angular mo-

mentum J is conserved if the force is purely central. If the force is non-

central, but still possesses axial symmetry — so that H depends on θ but

not on ϕ — then only the component of J along the axis of symmetry,

namely pϕ, is conserved.

Similarly, for the symmetric top, the equation ∂H/∂ϕ = 0 is an ex-

pression of the rotational symmetry of the system about the vertical. The



292 Classical Mechanics

corresponding conserved quantity pϕ is the vertical component of J ; for,

by (9.43) and (9.45),

Jz = k · J = I1ϕ̇ sin2 θ + I3(ψ̇ + ϕ̇ cos θ) cos θ = pϕ.

The equation ∂H/∂ψ = 0 expresses the rotational symmetry of the top itself

about its own axis. The energy is clearly unchanged by rotating the top

about its axis. In this case, we see from (9.45) that the conserved quantity

pψ is the component of J along the axis of the top, pψ = J3 = e3 · J .

Now of course not all symmetries are expressible simply by saying that

H is independent of some particular co-ordinate. For example, we might

consider the central force problem in terms of the Cartesian co-ordinates x

and y. Then the Hamiltonian is

H =
p2
x + p2

y

2m
+ V

(

√

x2 + y2
)

.

Since it depends on both x and y, neither co-ordinate is ignorable. It does,

however, possess a symmetry under rotations. If we make a small rotation

through an angle δθ, the changes in the co-ordinates and momenta are (see

Fig. A.4)

δx = −y δθ, δy = x δθ,

δpx = −py δθ, δpy = px δθ.
(12.28)

Under this transformation, δ(x2 + y2) = 0 and δ(p2
x + p2

y) = 0, so clearly

δH = 0.

Now we know from our earlier discussion in terms of polar co-ordinates

that this symmetry is related to the conservation of angular momentum,

J = xpy − ypx = constant.

The problem is to understand the relationship between the transformation

(12.28) and the conserved quantity J .

Let us consider a general function of the co-ordinates, momenta, and

time, G(q, p, t). We define the transformation generated by G to be

δqα =
∂G

∂pα
δλ, δpα = − ∂G

∂qα
δλ, (12.29)

where δλ is an infinitesimal parameter. For example, the function G = p1

generates the transformation in which δq1 = δλ, while all the remaining co-

ordinates and momenta are unchanged. Using Hamilton’s equations (12.6)



Hamiltonian Mechanics 293

and (12.7), we see that the transformation generated by the Hamiltonian is

δqα = q̇α δλ, δpα = ṗα δλ. (12.30)

If δλ is interpreted as a small time interval, this represents the time devel-

opment of the system.

We can now return to the function J . The transformation it generates

is given by

δx =
∂J

∂px
δλ = −y δλ, δy =

∂J

∂py
δλ = x δλ,

δpx = −∂J
∂x

δλ = −py δλ, δpy = −∂J
∂y

δλ = px δλ.

This is clearly identical to the infinitesimal rotation (12.28). Thus we have

established a connection between J and this transformation (12.28).

The next problem is to understand why the fact that this transformation

represents a symmetry property of the system should lead to a conservation

law. To this end, we return to a general function G, and consider the effect

of the transformation (12.29) on some other function F (q, p, t). The change

in F is

δF =
n
∑

α=1

(

∂F

∂qα
δqα +

∂F

∂pα
δpα

)

=
n
∑

α=1

(

∂F

∂qα

∂G

∂pα
− ∂F

∂pα

∂G

∂qα

)

δλ.

This kind of sum, involving the derivatives of two functions, appears quite

frequently, and it is convenient to introduce an abbreviated notation. We

define the Poisson bracket of F and G to be

[F,G] =

n
∑

α=1

(

∂F

∂qα

∂G

∂pα
− ∂F

∂pα

∂G

∂qα

)

. (12.31)

Then we can write the change in F under the transformation generated by

G in the form

δF = [F,G] δλ. (12.32)

A particular example is provided by the transformation (12.30) gener-

ated by H . The rate of change of F is

dF

dt
=
∂F

∂t
+

n
∑

α=1

(

∂F

∂qα
q̇α +

∂F

∂pα
ṗα

)

=
∂F

∂t
+ [F,H ]. (12.33)
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The extra term here arises from the fact that we have now allowed F to have

an explicit dependence on the parameter t, in addition to the dependence

via q and p.

Now an obvious property of the Poisson bracket is its antisymmetry. If

we interchange F and G, we merely change the sign:

[G,F ] = −[F,G]. (12.34)

This has the important consequence that, if F is unchanged by the trans-

formation generated by G, then reciprocally G is unchanged by the trans-

formation generated by F .

We are now finally in a position to apply this discussion to the case of a

symmetry property of the system. Let us suppose that there exists a trans-

formation of the co-ordinates and momenta which leaves the Hamiltonian

unaffected, and which is generated by a function G. From (12.29) we see

that the generator G is unique, apart from an arbitrary additive function

of t, independent of q and p. In particular, if the transformation does not

involve the time explicitly, then G may be chosen to contain no explicit t

dependence. The condition that H should be unchanged is

δH = [H,G] δλ = 0. (12.35)

It then follows from the reciprocity relation (12.34) that [G,H ] = 0 also.

Hence if ∂G/∂t = 0, we find from (12.33) that

dG

dt
= [G,H ] = 0. (12.36)

Thus we have shown that if H is unaltered by a t-independent transforma-

tion of this type, then the corresponding generator is conserved.

The number of independent symmetries possessed by a system, and

hence the number of conserved quantities, has a profound effect on the

way that the system may behave. By exploiting the conservation laws, the

complexity of problems may be reduced progressively. If the number of

independent conserved quantities for a system, i.e., constants or integrals

of the motion, is at least equal to the number of degrees of freedom (the

number of independent co-ordinates), then the reduction may be complete,

and the system is termed integrable (in the sense of Liouville — see §14.1).

The motion is then ordered and ‘regular’. If there are insufficient conserved

quantities to bring this about, then the motion may exhibit disorder or

‘chaos’.
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The central, conservative force problems considered in Chapter 4, and

the symmetric top considered in §10.3 and §§12.3, 12.4, are examples of

integrable systems, since they possess respectively two and three conserved

quantities, equal in each case to the number of degrees of freedom. The

restricted three-body problem, considered in Problems 15 and 16 of Chapter

10, and in Problems 12 and 13 at the end of this chapter, does not possess

such a complete set of conserved quantities, and so is not integrable.

The formal description of the connection between symmetry properties

and invariance is contained in a famous theorem due to Emmy Noether

(1918).

12.7 Galilean Transformations

To illustrate the ideas of the preceding section, we shall consider a general,

isolated system of N particles, and investigate the symmetry properties

implied by the relativity principle of §1.1.

The system has 3N degrees of freedom, and may be described by the par-

ticle positions ri and momenta pi (i = 1, 2, . . . , N). We shall consider four

distinct symmetry properties, associated with the requirements that there

should be no preferred zero of the time scale, origin in space, orientation

of axes, or standard of rest. The corresponding symmetry transformations

are translations in time, spatial translations, rotations, and transformations

between frames moving with uniform relative velocity (sometimes called

boosts). A combination of these four types of transformation is the most

general transformation which takes one inertial frame into another. They

are known collectively as Galilean transformations. We consider them in

turn.

Time translations

The changes in r and p in an infinitesimal time δt are generated by the

Hamiltonian function H . The condition for invariance of H under this

transformation is [H,H ] = 0, which is certainly true because of (12.34).

Thus, as we showed in §12.2, if H contains no explicit time dependence,

then it is in fact conserved,

dH

dt
= 0. (12.37)
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Spatial translations

An infinitesimal translation of the system through a distance δx in the x

direction is represented by the transformation

δxi = δx, δyi = 0, δzi = 0,

δpxi = 0, δpyi = 0, δpzi = 0.
(12.38)

The corresponding generator is easily seen to be the total x-component of

momentum,

Px =

N
∑

i=1

pxi.

The condition for H to be invariant under this transformation is

0 = [H,Px] δx =

N
∑

i=1

∂H

∂xi
δx.

It is satisfied if H depends only on the co-ordinate differences xi − xj ;

for then, changing each xi by the same amount cannot affect H . When

this condition holds, we obtain a conservation law for the x-component of

momentum, dPx/dt = 0.

More generally, a translation in the direction of the unit vector n is

generated by the component of the total momentum P in this direction,

n ·P . When the system possesses translational invariance in all directions,

then all components of P are conserved:

dP

dt
= 0. (12.39)

This is physically very reasonable. We know from our earlier work that

momentum is conserved for an isolated system, but not for a system sub-

jected to external forces which determine a preferred origin (for example,

a centre of force).

Rotations

An infinitesimal rotation through an angle δϕ about the z-axis yields

δxi = −yi δϕ, δyi = xi δϕ, δzi = 0,

δpxi = −pyi δϕ, δpyi = pxi δϕ, δpzi = 0.
(12.40)
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The corresponding generator is the z-component of the total angular mo-

mentum,

Jz =
N
∑

i=1

(xipyi − yipxi).

The condition for H to be rotationally symmetric, [H, Jz] = 0, is satis-

fied provided that H involves the x and y co-ordinates and momenta only

through invariant combinations like xixj + yiyj .

In general, a rotation through an angle δϕ about an axis in the direction

of the unit vector n may be written in the form

δri = n ∧ ri δϕ, δpi = n ∧ pi δϕ. (12.41)

It is generated by the appropriate component of the angular momentum,

n · J .

The Hamiltonian function is invariant under this transformation pro-

vided that it is a scalar function of ri and pi, involving only the squares

and scalar products of vectors. It is easy to verify that scalar quantities are

indeed unchanged by (12.41). For example,

δ(ri · rj) = (δri) · rj + ri · (δrj) = [(n ∧ ri) · rj + ri · (n ∧ rj)]δϕ = 0,

by the symmetry of the scalar triple product (see (A.13)).

When the Hamiltonian possesses complete rotational symmetry, then

every component of J is conserved, and so

dJ

dt
= 0. (12.42)

So far, we have shown that the conservations laws of energy, momentum,

and angular momentum are expressions of symmetry properties required by

the relativity principle. They have, therefore, a much more general validity

than the specific assumptions used in their original derivation. For example,

we have not assumed that the forces in our system are all two-body forces, or

that they are central or conservative. All we have assumed is the existence

of the Hamiltonian function, and the relativity principle.

There remains one type of Galilean transformation, which is in some

ways rather different from the others.
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Transformations to moving frames

Let us consider the effect of giving our system a small overall velocity δv in

the x direction — a small ‘boost’. The corresponding transformations are

δxi = t δv, δyi = 0, δzi = 0,

δpxi = mi δv, δpyi = 0, δpzi = 0.
(12.43)

This transformation differs from the others we have considered in that t

appears explicitly in (12.43). The generator of this transformation is

Gx =

N
∑

i=1

(pxit−mixi) = Pxt−MX,

where M is the total mass, and X is the x co-ordinate of the centre of

mass. This generator is also explicitly time-dependent. It is clearly the x

component of the vector

G = P t−MR. (12.44)

Transformations to frames moving in other directions are generated by ap-

propriate components of this vector.

We must now be careful. For, because of the explicit time-dependence,

it is no longer true thatH must be invariant under (12.43). Indeed, we know

that the energy of a system does depend on the choice of reference frame,

though not on the choice of origin or axes. What the relativity principle

actually requires is that the equations of motion should be unchanged by

the transformation. It can be shown (see Problem 17) that the condition

for this is still

dG

dt
= 0. (12.45)

However, this no longer implies the invariance of H . In fact, using (12.33)

and (12.34), we find

δH = [H,G] δλ = −[G,H ] δλ =
∂G

∂t
δλ. (12.46)

Thus the change in H is related to the explicit time-dependence of G.

The fourth of the basic conservation laws, for the quantity (12.44), is

dG

dt
=

d

dt
(P t−MR) = 0. (12.47)
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Though this is an unfamiliar form, the equation is actually quite familiar.

For, since dP /dt = 0, it may be written

P −M
dR

dt
= 0,

which is simply the relation (8.7) between the total momentum and the

centre-of-mass velocity. This relation too is therefore a consequence of the

relativity principle.

Let us now turn to the question of what this symmetry implies for the

form of the Hamiltonian function. For a transformation in the x direction,

the change in H , given by (12.46), is

δH =
∂Gx
∂t

δv = Px δv. (12.48)

Now, if we write

H = T + V, where T =

N
∑

i=1

p2
i

2mi
,

then we find directly from (12.43) that

δT =
N
∑

i=1

pxi δv = Px δv.

Thus the change in kinetic energy is exactly what is demanded by (12.48),

and this relation reduces to

δV = 0. (12.49)

It is interesting to examine the conditions imposed on V by this require-

ment. We have already seen that V must be a scalar function, and must

involve the particle positions only through the differences rij = ri − rj .

Since these are unaffected by (12.43), the requirement (12.49) imposes no

further restrictions on the r dependence. Moreover, V must contain no

explicit dependence on time. However, none of the conditions imposed so

far requires it to be independent of the momenta. To satisfy (12.49), it

must contain them only through the combinations

vij =
pi
mi

−
pj

mj
,
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which are easily seen to be invariant under (12.43), but this is the only

new requirement. Thus the most general form of interaction in an N -

particle system which is invariant under all Galilean transformations is

one described by a ‘potential energy function’ which is an arbitrary scalar

function of the relative position vectors and the relative velocity vectors.

Reflections; parity

There is one other type of co-ordinate transformation which might be men-

tioned. All those we have considered so far have the property that if we

start with a right-handed set of axes, then the transformation takes us

to another right-handed set. However, we could also consider transforma-

tions like reflections (say x → −x, y → y, z → z) or inversions (r → −r)

which lead from a right-handed set of axes to a left-handed set. These are

called improper co-ordinate transformations. They differ from the proper

transformations, such as rotations, in being discrete rather than continu-

ous — no continuous change can ever take a right-handed set of axes into

a left-handed set.

The condition for the Hamiltonian to be unchanged also under improper

co-ordinate transformations is that it should be a true scalar function, like

ri · rj , rather than a pseudoscalar, like (ri ∧ rj) · rk, which changes sign

under inversion. If this condition is fulfilled, the equations of motion will

have the same form in right-handed and left-handed frames of reference.

Because of the discontinuous nature of these transformations, this sym-

metry does not lead to a conservation law for some continuous variable. In

fact, in classical mechanics, it does not lead to a conservation law at all.

However, in quantum mechanics, it yields a conservation law for a quantity

known as the parity, which has only two possible values ±1. Until 1957,

it was believed that all physical laws were unchanged by reflections, but it

was then discovered by Wu et al, following a theoretical prediction by Lee

and Yang, that parity is in fact not conserved in the process of radioactive

decay of atomic nuclei. The laws describing such processes do not have the

same form in right-handed and left-handed frames of reference.

12.8 Summary

The Hamiltonian method is an extremely powerful tool in dealing with com-

plex problems. In particular, when the Hamiltonian function is independent
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of some particular co-ordinate qα, then the corresponding generalized mo-

mentum pα is conserved. In such a case, the number of degrees of freedom

is effectively reduced by one.

More generally, we have seen that any symmetry property of the system

leads to a corresponding conservation law. This can be of great importance

in practice, since the amount of labour involved in solving a complicated

problem can be greatly reduced by making full use of all the available

symmetries. If there is a sufficient number of symmetries, then the system

is ‘integrable’ (in the sense of Liouville) and the conservation laws may then

be exploited to produce (in principle) the complete solution to the problem.

The Hamiltonian function is also of great importance in quantum me-

chanics, and many of the features of our discussion carry over to that case.

We have seen that the variables appear in pairs. To each co-ordinate qα
there corresponds a momentum pα. Such pairs are called canonically con-

jugate. This relationship between pairs of variables is of central importance

in quantum mechanics, where there is an ‘uncertainty principle’ according

to which it is impossible to measure both members of such a pair simulta-

neously with arbitrary accuracy.

The relationship between symmetries and conservation laws also applies

to quantum mechanics. In relativity, the transformations we consider are

slightly different (Lorentz transformations rather than Galilean), but the

same principles apply, and lead to very similar conservation laws.

The relationship between the relativity principle and the familiar con-

servation laws (including the ‘conservation law’ P = M Ṙ) is of the greatest

importance for the whole of physics. It is the basic reason for the univer-

sal character of these laws, which were originally derived as rather special

consequences of Newton’s laws, but can now be seen as having a far more

fundamental role.

Problems

1. A particle of mass m slides on the inside of a smooth cone of semi-

vertical angle α, whose axis points vertically upwards. Obtain the

Hamiltonian function, using the distance r from the vertex, and the

azimuth angle ϕ as generalized co-ordinates. Show that stable circular

motion is possible for any value of r, and determine the correspond-

ing angular velocity, ω. Find the angle α if the frequency of small

oscillations about this circular motion is also ω.
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2. Find the Hamiltonian function for the forced pendulum considered in

§10.4, and verify that it is equal to T ′+V ′. Determine the frequency of

small oscillations about the stable ‘equilibrium’ position when ω2 > g/l.

3. A light, inextensible string passes over a small pulley and carries a

mass 2m on one end. On the other end is a mass m, and beneath

it, supported by a spring with spring constant k, a second mass m.

Find the Hamiltonian function, using the distance x of the first mass

beneath the pulley, and the extension y in the spring, as generalized co-

ordinates. Show that x is ignorable. To what symmetry property does

this correspond? (In other words, what operation can be performed on

the system without changing its energy?) If the system is released from

rest with the spring unextended, find the positions of the particles at

any later time.

4. A particle of mass m moves in three dimensions under the action of

a central, conservative force with potential energy V (r). Find the

Hamiltonian function in terms of spherical polar co-ordinates, and

show that ϕ, but not θ, is ignorable. Express the quantity J2 =

m2r4(θ̇2 + sin2 θ ϕ̇2) in terms of the generalized momenta, and show

that it is a second constant of the motion.

5. *Find the Hamiltonian for the pendulum hanging from a trolley de-

scribed in Chapter 10, Problem 9. Show that x is ignorable. To what

symmetry does this correspond?

6. *Obtain the Hamiltonian function for the top with freely sliding pivot

described in Chapter 10, Problem 11. Find whether the minimum

angular velocity required for stable vertical rotation is greater or less

than in the case of a fixed pivot. Can you explain this result physically?

7. *To prove that the effective potential energy function U(θ) of the sym-

metric top (see §12.4) has only a single minimum, show that the equa-

tion U(θ) = E can be written as a cubic equation in the variable

z = cos θ, with three roots in general. Show, however, that f(z) has the

same sign at both z = ±1, and hence that there are either two roots or

none between these points: for every E there are at most two values of

θ for which U(θ) = E.

8. Find the Hamiltonian for a charged particle in electric and mag-

netic fields in cylindrical polars, starting from the Lagrangian function

(10.29). Show that in the case of an axially symmetric, static mag-

netic field, described by the single component Aϕ(ρ, z) of the vector
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potential, it takes the form

H =
1

2m

(

p2
z + p2

ρ +
(pϕ − qρAϕ)2

ρ2

)

.

(Note: Remember that the subscripts ϕ on the generalized momentum

pϕ and on the component Aϕ mean different things.)

9. A particle of mass m and charge q is moving around a fixed point

charge −q′ (qq′ > 0), and in a uniform magnetic field B. The motion

is confined to the plane perpendicular to B. Write down the Lagrangian

function in polar co-ordinates rotating with the Larmor angular velocity

ωL = −qB/2m (see §5.5). Hence find the Hamiltonian function. Show

that ϕ is ignorable, and interpret the conservation law. (Note that Jz
is not a constant of the motion.)

10. Consider a system like that of Problem 9, but with a charge +q′ at

the origin. By examining the effective radial potential energy function,

find the radius of a stable circular orbit with angular velocity ωL, and

determine the angular frequency of small oscillations about it.

11. *A particle of mass m and charge q is moving in the equatorial plane

z = 0 of a magnetic dipole of moment µ, described (see Appendix A,

Problem 12) by a vector potential with the single non-zero component

Aϕ = µ0µ sin θ/4πr2. Show that it will continue to move in this plane.

Initially, it is approaching from a great distance with velocity v and

impact parameter b, whose sign is defined to be that of pϕ. Show that

v and pϕ are constants of the motion, and that the distance of closest

approach to the dipole is 1
2 (
√
b2 ∓ a2 ± b), according as b > a or b < a,

where a2 = µ0qµ/πmv. (Here qµ is assumed positive.) Find also the

range of values of b for which the velocity can become purely radial, and

the distances at which it does so. Describe qualitatively the appearance

of the orbits for different values of b. (Hint : It may be useful to sketch

the effective radial potential energy function.)

12. *Find the Hamiltonian for the restricted three-body problem described

in Chapter 10, Problems 15 and 16. Investigate the stability of one of

the Lagrangian ‘equilibrium’ positions off the line of centres by assum-

ing a solution where x − x0, y − y0, px +mωy0 and py −mωx0 are all

small quantities proportional to ept, with p constant. Show that the

possible values for p are given by

p4 + ω2p2 +
27M1M2ω

4

4(M1 +M2)2
= 0,
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and hence that the points are stable provided that the masses M1 and

M2 are sufficiently different. Specifically, given that M1 > M2 show

that the minimum possible ratio for stability is slightly less than 25.

13. The stability condition of Problem 12 is well satisfied for the case of

the Sun and Jupiter, for which M1/M2 = 1047. Indeed, in that case

these positions are occupied by the so-called Trojan asteroids, whose

orbital periods are the same as Jupiter’s, 11.86 years. Find for this case

the periods of small oscillations about the ‘equilibrium’ points (in the

plane of the orbit).

14. *The magnetic field in a particle accelerator is axially symmetric (as in

Problem 8), and in the plane z = 0 has only a z component. Defining

J = pϕ − qρAϕ, show, using (A.40) and (A.55), that ∂J/∂ρ = −qρBz,
and ∂J/∂z = qρBρ. What is the relation between ϕ̇ and J? Treat the

third term of the Hamiltonian in Problem 8 as an effective potential

energy function U(ρ, z) = J2/2mρ2, compute its derivatives, and write

down the ‘equilibrium’ conditions ∂U/∂ρ = ∂U/∂z = 0. Hence show

that a particle of mass m and charge q can move in a circle of any given

radius a in the plane z = 0 with angular velocity equal to the cyclotron

frequency for the field at that radius (see §5.2).

15. *To investigate the stability of the motion described in the preceding

question, evaluate the second derivatives of U at ρ = a, z = 0, and

show that they may be written

∂2U

∂ρ2
=
q2

m

[

Bz

(

Bz + ρ
∂Bz
∂ρ

)]

ρ=a,z=0

,

∂2U

∂ρ ∂z
= 0,

∂2U

∂z2
= −q

2

m

[

Bzρ
∂Bz
∂ρ

]

ρ=a,z=0

.

(Hint : You will need to use the ϕ component of the equation ∇∧B = 0,

and the fact that, since Bρ = 0 for all ρ, ∂Bρ/∂ρ = 0 also.) Given that

the dependence of Bz on ρ near the equilibrium orbit is described by

Bz ∝ (a/ρ)n, show that the orbit is stable if 0 < n < 1.

16. Show that the Poisson brackets of the components of angular momen-

tum are

[Jx, Jy] = Jz

(together with two other relations obtained by cyclic permutation of

x, y, z). Interpret this result in terms of the transformation of one

component generated by another.
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17. *Show that the condition that Hamilton’s equations remain unchanged

under the transformation generated by G is dG/dt = 0 even in the

case when G has an explicit time-dependence, in addition to its depen-

dence via q(t) and p(t). Proceed as follows. The first set of Hamilton’s

equations, (12.6), will be unchanged provided that

d

dt
(δqα) = δ

(

∂H

∂pα

)

.

Write both sides of this equation in terms of G and use (12.33) applied

both to ∂G/∂pα and to G itself to show that it is equivalent to the

condition

∂

∂pα

(

dG

dt

)

= 0.

Thus dG/dt is independent of each pα. Similarly, by using the other

set of Hamilton’s equations, (12.7), show that it is independent of each

qα. Thus dG/dt must be a function of t alone. But since we can always

add to G any function of t alone without affecting the transformation

it generates, this means we can choose it so that dG/dt = 0.
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Chapter 13

Dynamical Systems and Their

Geometry

In this chapter we will begin to look at continuous dynamical problems in

a new, powerful and largely geometrical way, which had its origins in the

work of Poincaré.

This approach enables us to move on from the solution of the differential

equations for a system having one set of parameters and initial conditions

to the consideration of the geometry of all the possible solutions. Not

only does this new perspective bring out important features of systems

which are already familiar, but it also enables us to gain qualitative (and

some quantitative) information about systems in which there is complex

interaction, which may be highly nonlinear and accessible by other methods

only with difficulty, if at all.

The ideas are of very wide applicability in many fields, not only in

mechanics, other branches of physics, engineering and applied mathematics,

but also in, for example, biology, chemistry and economics.

[For some systems it is appropriate and useful to observe at discrete time

intervals (not necessarily equal). Differential equations are then replaced

by maps — see §14.2 and appendix D.]

13.1 Phase Space and Phase Portraits

Many systems have a finite number n of distinct dynamic elements, which

may be represented by functions xi(t) of time t where i = 1, 2, . . . , n. It

should be noted that n is not necessarily the same as the number of degrees

of freedom if, for example, the system is mechanical. Here we are dealing

with the number of elements which describe the dynamic state and these

might therefore include, for example, positions and velocities or momenta

(as in §12.1).

307
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We may denote the state of the system by the vector x(t) and the n

equations of motion can be written in vector form

ẋ ≡ dx

dt
= F (x, t), (13.1)

describing the evolution of the dynamic elements with ‘velocity’ F .

In practice F usually contains a set c of control parameters which are

characteristic of the physical problem, like masses, spring constants and so

on.

The idea is that we fix c and consider the solutions of (13.1) for var-

ious different prescribed values of the xi at a particular initial time, so

determining the evolution of these different initial states.

It is extremely useful to view (13.1) as the prescription for the way in

which the point x evolves with time along trajectories (or orbits) in an

n-dimensional space — the phase space of the system. The function F in

(13.1) is then called the phase velocity. The set of all trajectories in this

space for various initial prescribed values of x, together with the velocity

directions upon them, constitutes the phase portrait of the system. The

evolutions of a continuous dynamical system pictured in this manner are

often described as a flow, by analogy with fluid motion (see Fig. 13.1).

The phase space is usually taken to be Euclidean in its geometry. While

this is not absolutely necessary, it is useful to do so, although there are

obvious difficulties in graphical representation when n > 3.

Fig. 13.1
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It is important to note that the first-order system (13.1) is not as special

as it appears, since any system having higher-order derivatives can be put

into this standard form by a suitable change of variables. If we have

dnx

dtn
= G

(

t, x,
dx

dt
, . . . ,

dn−1x

dtn−1

)

, (13.2)

then we may write xi = di−1x/dti−1 for i = 1, 2, . . . , n, and recover the

form (13.1). Simple examples of this technique (for n = 2) will be given

below.

In (13.1) the functions Fi contained within the phase velocity F may not

depend explicitly on time, and the system is then said to be autonomous.

Of course, it is immediately apparent that any non-autonomous system

may be made autonomous through the substitution xn+1 = t, but at the

expense of raising by one the dimension of the phase space. We will not

be concerned further with this matter here, but will concentrate almost

exclusively on autonomous systems [cf. also ‘natural systems’ of §10.1].

Evidently the phase portrait for a particular dynamical system may look

very different for different values of the control parameters c in (13.1) and,

for many such systems, there is considerable interest in the dynamical tran-

sitions which occur in their behaviour at particular parameter values. The

importance of this lies in what is called the structural stability of systems;

abrupt changes at particular c are bifurcations or catastrophes.

13.2 First-order Systems — the Phase Line (n = 1)

Let us consider the logistic differential equation for the dynamic state vari-

able x(t):

ẋ ≡ dx

dt
= kx− σx2, with x(0) = x0. (13.3)

Here k, σ are positive control parameters.

The equation, which is due to Verhulst, is a model of population growth

(among many other applications) and the general motivation is that the

growth rate ẋ/x decreases as the population x(t) increases on account of

overcrowding or lack of resources. Naturally the interest for this biological

application is in x0 ≥ 0.
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Now this equation (13.3) is first-order separable and it may be solved

explicitly to give

x(t) =
kx0

[σx0 + (k − σx0) exp(−kt)] , for x0 > 0,

x(t) ≡ 0, for x0 = 0.

(13.4)

This solution may be plotted as a function of t as in Fig. 13.2.

It is evident from (13.4) and from Fig. 13.2 that, for all x0 > 0, the

evolution of x with t is such that x→ k/σ. For 0 < x0 < k/σ the ‘sigmoid’

curves obtained represent the way in which the exponential growth (which

would be present if σ = 0) is inhibited by overcrowding. For x0 > k/σ there

is steady decay of the population towards the value k/σ. Since x → k/σ

as t → ∞ in each case, then the equilibrium population x(t) ≡ k/σ is

said to be asymptotically stable and it is an attractor . The equilibrium

population x(t) ≡ 0 is unstable, in that it is only realizable if x0 = 0. Any

positive change in x0, however small, results in explosive growth until the

overcrowding takes effect and x is attracted towards k/σ, as above. So

x(t) ≡ 0 is a repeller .

Now here we have been fortunate to be able to arrive at the complete

solution of (13.3) in the form (13.4). The comments detailed above result

from interpretation of (13.4) and of Fig. 13.2 derived from it. However, the

important qualitative behaviour of the solutions is obtainable more directly

from (13.3) by considering the phase space and the phase portrait.

Fig. 13.2
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Example: Phase portrait of the logistic system

Find the qualitative features of the logistic system by considering

the phase portrait.

The phase space is here one-dimensional (a phase line). (See Fig. 13.3.)

In constructing the phase portrait for this example the equilibria x = 0,

x = k/σ are found by putting ẋ ≡ 0 in (13.3). It is important to note

that these equilibria, or critical points, are the only values of x at which

ẋ can change sign. The arrow directions are those of the phase velocity

and, here, the complete portrait can be found by testing just a single

x value away from the equilibria. From this we see immediately that

x = k/σ is an attractor and x = 0 is a repeller.

Fig. 13.3

The above is sufficient argument, but with an eye to developments for

higher-order systems we can consider a small-amplitude approximation

near to each critical point, very similar to the analysis carried out in, for

example, §2.2. If we write x(t) = k/σ + ξ(t), where ξ(t) is small enough

for quadratic terms involving it to be neglected, then we find that

ξ̇ = −kξ (13.5)

to first order in ξ and ξ(t) → 0 exponentially as t → ∞, since k is

positive, confirming of course that x = k/σ is an attractor. Note that

this solution of (13.5) is consistent with our assumption that quadratic

terms in ξ could be neglected. The other critical point x = 0 may be

treated similarly and confirmed as a repeller.

An important point to note here is that for this system and for other

such first-order systems the qualitative behaviour is completely determined

by the position of the critical points, by the local behaviour on the phase

line near to them and through the strong geometrical requirement that ẋ

cannot change sign at any other value of x.

We might consider the equation

ẋ = kx− σx2 − f, (13.6)
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where f represents a positive constant extraction rate. For example, x(t)

could be the population of fish in a lake and f the rate of fishing this

population. The exact solution is now rather more awkward to obtain and

the use of the one-dimensional phase space provides clear advantage. In

particular, the extra control parameter f which has been introduced can

be varied and predictions made about the evolution of x from resulting

changes in the phase portrait. (See Problem 1.)

The analysis given above will be generalized in following sections to deal

with higher-order systems.

Naturally for many biological systems a discrete, rather than continuous,

model is more appropriate [see Appendix D].

13.3 Second-order Systems — the Phase Plane (n = 2)

Again let us proceed by considering a particular and familiar example.

Example: Simple harmonic oscillator

Determine the phase-space trajectories of the simple harmonic

oscillator.

The oscillator equation (2.13) may be written

ẍ = −ω2x, ω =
√

k/m, (13.7)

which is in the form (13.2) and which may be converted to the form

(13.1) as

ẋ = y,

ẏ = −ω2x.
(13.8)

The trajectories of this autonomous system in the (x, y) phase plane are

evidently given by the solutions of

dy

dx
≡ ẏ

ẋ
= −ω

2x

y
, (13.9)

which may be solved easily to give

ω2x2 + y2 = A2, with A2 constant. (13.10)

The phase portrait is a family of ellipses centred at the origin. (See

Fig. 13.4.) Here, along each trajectory the energy E of the oscillator is
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Fig. 13.4

constant and given by E = 1
2mA

2. Evidently (x, y) = (0, 0) is a critical

point of the system (13.8) and any small perturbation leads to the system

traversing an elliptical trajectory around this equilibrium point. Each

trajectory is closed and is therefore a periodic orbit.

In this case, we were able to find the trajectories by direct integration of

(13.9). In the case of a general system this may well not be easy, or possible,

except by numerical computation.

The general second-order autonomous system with which we are pre-

sented is

ẋ = F (x, y),

ẏ = G(x, y),
(13.11)

where F,G are suitable functions. It is apparent that the equation

dy

dx
=
G

F
(13.12)

certainly determines the slope of the unique trajectory in the phase plane

at each point except at the critical points (x0, y0), for which F (x0, y0) =

0 = G(x0, y0). Each such (x0, y0) is an equilibrium solution of the system

and trajectories can only intersect at such points and nowhere else.

The interesting question to ask, from the physical point of view, con-

cerns the fate of the system when it is displaced slightly from such a critical

point. The system could, for general small displacements:
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1. Move so as to tend towards (x0, y0) as t→ ∞, in which case we say the

system is asymptotically stable.

2. Move increasingly away from (x0, y0), in which case we say it is unstable.

3. Move in an arbitrarily small neighbourhood of (x0, y0) without neces-

sarily tending towards (x0, y0) as t → ∞, in which case we say it is

stable.

The simple harmonic oscillator is therefore stable at x = 0, y ≡ ẋ = 0 —

hardly a surprising conclusion!

The behaviour of the trajectories near to each critical point (x0, y0) in

the phase plane can be found by an analysis similar to that introduced in

§13.2 using x = x0 + ξ, y = y0 + η, in which ξ, η are small and we expand

functions F (x, y), G(x, y) locally. We obtain

ξ̇ = ξ

(

∂F

∂x

)

0

+ η

(

∂F

∂y

)

0

+ F1(ξ, η),

η̇ = ξ

(

∂G

∂x

)

0

+ η

(

∂G

∂y

)

0

+G1(ξ, η).

(13.13)

Here the partial derivatives are evaluated at the critical point (x0, y0) and

F1, G1 are generally quadratic in ξ, η. In matrix notation, these equations

are

[

ξ̇

η̇

]

≡ d

dt

[

ξ

η

]

= M

[

ξ

η

]

+ higher-order terms, (13.14)

and the 2× 2 Jacobian matrix M has constant entries which are special to

each critical point. In nearly all cases the correct behaviour of the almost

linear system near ξ = 0 = η is given by the behaviour of the linear system

which is obtained by neglecting the higher-order terms F1, G1 in the above.

The behaviour near (x0, y0) of the linear system may be classified using

the eigenvalues λ of M . We seek a solution of the linear system which is a

linear combination of ‘modes’, in each of which ξ, η are constant multiples of

eλt. The analysis appears similar to that involved in the calculation of the

frequencies of the normal modes in §11.3, but we are dealing with matrices

M which are not necessarily symmetric, so that the roots of the quadratic

characteristic equation for λ need not be real. Evidently, the signs of the

real parts of these roots are crucial in determining whether trajectories near

to (x0, y0) go inwards towards this critical point or go outwards from it.
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Details of the classification of critical points in the various cases are given

in Appendix C.

The curves which go directly in and directly out of a critical point are

called the stable and unstable manifolds respectively and, in the linear and

almost linear systems, they correspond directly and are tangent to one

another. We note that the critical point (x0, y0) = (0, 0) for the simple

harmonic oscillator is a centre, i.e. nearby trajectories form closed curves

around it. (See Appendix C, Fig. C.6.)

The importance of the local behaviours near critical points of system

(13.11) is that we can usually obtain a qualitative picture of the full phase

portrait of the system by this means. The trajectories are constrained in

that they cannot intersect elsewhere and they are locally parallel to the x, y

axes respectively when crossing the curves G(x, y) = 0, F (x, y) = 0.

The fate of particular initial states becomes apparent from the phase

portrait. Detailed quantitative information can, if required, be obtained

from exact computational plots.

Apart from systems for which (13.12) may be integrated in straightfor-

ward fashion to give the curve family f(x, y) = constant, there are some

special cases of particular interest in mechanics.

Conservative systems with one degree of freedom

For the systems considered in §2.1 we have

ẋ = y, ẏ =
F

m
, with F = −dV (x)

dx
, (13.15)

and we find the trajectories are given by

1
2my

2 + V (x) = E, y = ±
√

2

m
[E − V (x)]. (13.16)

When the potential V (x) is known the phase portrait may be sketched

immediately. (See Fig. 13.5.)

Since

M =

⎡

⎣

0 1

−V
′′(x0)

m
0

⎤

⎦

at equilibria (x0, 0), the eigenvalues of M when V (x) is a local minimum

are pure imaginary, since V ′′(x0) is positive, and (x0, 0) is a centre, which

is stable. Similarly, local maxima of V (x) lead to saddles in the phase
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Fig. 13.5

portrait and these are unstable, i.e. most trajectories approach the critical

point, but then turn away. (See Appendix C, Fig. C.2.)

An important physical example is provided by the simple pendulum of

§2.1.

Example: Simple pendulum

Determine the possible types of motion of a simple pendulum by

considering the phase portrait.

From the 2π-periodic potential function V (θ) sketched in Fig. 2.1 we

can sketch the phase portrait. (See Fig. 13.6.)

The phase portrait is also 2π-periodic. The simple oscillatory mo-

tions corresponding to closed orbits around (0, 0) are called librations

and, since V (θ) = mgl(1− cosθ), it is necessary that E < 2mgl for these
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Fig. 13.6

to occur (E(1) in Fig. 2.1). If E > 2mgl (E(2) in Fig. 2.1) the pendu-

lum makes complete revolutions or rotations, either in the positive or

negative sense. In the special case E = 2mgl the trajectory is a separa-

trix connecting the saddles (−π, 0), (π, 0), and corresponds to motions

of the pendulum in which it is vertically above the point of support at

t→ ±∞. The period of libration motion of the pendulum increases with

increasing amplitude and becomes infinite as the phase-plane trajectory

corresponds more and more closely to the separatrices from the inside.

It should be noted that (13.15) in general, and hence the simple har-

monic oscillator and simple pendulum in particular, are Hamiltonian sys-

tems with one degree of freedom. For such systems the critical points in

the phase plane are either centres or saddles — spirals and nodes do not

occur!

Gradient systems

These systems have equations of the form

ẋ = −∂U(x, y)

∂x
, ẏ = −∂U(x, y)

∂y
, (13.17)

so that in (13.1) F takes the form −∇U . The trajectories in the phase

plane are everywhere perpendicular to the curves U(x, y) = constant, i.e.

they are orthogonal trajectories of the level curves (contours) of U . Here
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almost all trajectories tend towards local minima of the function U(x, y)

and away from local maxima. For these systems the critical points in the

phase plane are nodes and saddles — spirals and centres do not occur.

A physical example of a gradient system is the ‘runoff’ problem of water

flowing downhill through surface soil. (See Fig. 13.7 and Problem 5.)

Fig. 13.7

13.4 Prey–Predator, Competing-species Systems and War

The general method of analysis in the phase plane introduced in §13.3 finds

very wide application.

An interesting example, which is deceptively simple, leads to the equa-

tions

ẋ = ax− bxy,

ẏ = −cy + dxy,
(13.18)

where a, b, c, d are positive constants. These equations have been used by

Volterra (1926) to model biological populations and by Lotka (1920) to

model chemical reactions. They are usually known as the Lotka–Volterra

system.
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The biological application is to a simple ecological model of population

dynamics, where x, y are prey, predators respectively (e.g. rabbits, foxes)

and the terms proportional to xy model the effect of interaction between

these species through encounters — advantageous to the predators, disad-

vantageous to the prey. Without the interactions the prey would proliferate

exponentially in time, while the predators would die out. The parameters

a, b, c, d are therefore rates of growth, decay and competitive efficiency.

The ecology, even of such isolated sets of species, is, of course, not this

simple, but the consequences of idealized models prove useful as a basis for

more extensive investigations.

Example: Lotka–Volterra system

Find the critical points and their nature for the Lotka–Volterra

system.

In the local linear analysis there are two critical points for the system

(13.18):

• (0, 0) withM =

[

a 0

0 −c

]

, so that the eigenvalues are λ1 = a, λ2 = −c.
We have a saddle with eigenvectors parallel to the x, y co-ordinate

axes.

•
( c

d
,
a

b

)

with M =

⎡

⎢

⎣

0 −bc
d

ad

b
0

⎤

⎥

⎦
, so that the eigenvalues are imaginary:

λ1,2 = ±i
√
ac. We have a centre.

The question arises as to whether the centre is a true centre for the full

system in this case (see Appendix C and Problem 6). That it is such is

demonstrated by the realization that (13.18) leads to

dy

dx
=
y(−c+ dx)

x(a− by)
, (13.19)

which is separable, so that it may be integrated to give

f(x, y) ≡ −c ln |x| + dx− a ln |y| + by = constant. (13.20)

The phase portrait may be sketched as the set of contours of f(x, y).

(See Fig. 13.8.) Naturally, the biological interest is confined to the first
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Fig. 13.8

quadrant (x ≥ 0, y ≥ 0) and the trajectories are closed curves around the

critical point at (c/d, a/b), so confirming the local linear analysis that

this is indeed a centre.

Small oscillations around the point of stable equilibrium have frequency√
ac and period T = 2π/

√
ac, which increases with the size of the orbit,

although an explicit analytic demonstration of this is not easy and will not

be given here. However, since

∫ T

0

(

ẋ

x

)

dt =

∫ T

0

(a− by) dt =
[

lnx(t)
]T

0
= 0, (13.21)

we find that

ȳ =
1

T

∫ T

0

y dt =
a

b
,

so that the mean value of y around any periodic orbit is given by the

equilibrium value a/b. Similarly x̄ = c/d.
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There are ecological consequences of this model in that there are cyclic

variations in x, y, which are not in phase, and changes in parameter values

can be investigated. The effect here of a proportional extraction rate is to

reduce a and increase c, so that the mean populations of prey/predators

respectively increase/decrease — the paradoxical advantage to the prey of

this extraction is due to the removal of some natural predators, and is

known as Volterra’s principle.

The model has one further interest for us in that it is, in effect, a

Hamiltonian system, as detailed in Chapter 12. For the first quadrant we

may substitute x = ep, y = eq in order to obtain the Hamilton canonical

form

q̇ = −c+ d ep =
∂H

∂p
,

ṗ = a− b eq = −∂H
∂q

,

(13.22)

where H(q, p) = −cp+d ep−aq+ b eq. For this autonomous system, H is a

conserved quantity. (See §12.2.) In the original variables x, y the function

H(q, p) becomes equivalent to f(x, y) in (13.20) and it is an ‘energy’, but

not mechanical energy.

More complicated systems involving interactions are very common and

the outcomes are even less intuitively transparent.

For example

ẋ = k1x− σ1x
2 − α1xy,

ẏ = k2y − σ2y
2 − α2xy,

(13.23)

where k1, k2, σ1, σ2, α1, α2 are positive control parameters, models logistic

behaviour (see (13.3)) for each of x, y with similarly destructive interactions.

This system is certainly not usually Hamiltonian, but the phase portrait

is accessible by the local linear analysis near the critical points, of which

there may be four. The influence of the parameters is crucial. An example

of such a portrait is given in Fig. 13.9, for which the parameters have been

chosen to be k1 = σ1 = α1 = 1, k2 = 1
2 , σ2 = 1

4 , α2 = 3
4 . (See Problem 7 for

the details.)

Here there are two asymptotically stable nodes at (1, 0), (0, 2), an un-

stable node at (0, 0) and a saddle (unstable) at ( 1
2 ,

1
2 ). Nearly all initial

conditions lead to extinction for one or other species and this is an example

of the ‘Principle of Competitive Exclusion’ [Charles Darwin, The Origin of

Species (1859)].
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Fig. 13.9

In the general case (13.23) and where there is a critical point in the

first quadrant, an extinction is inevitable when k1σ2 < k2α1, k2σ1 < k1α2

(so that σ1σ2 < α1α2). On the other hand, peaceful coexistence via an

asymptotically stable node in the first quadrant is guaranteed when these

inequalities are all reversed (again, see Problem 7).

In human conflict there are mathematical theories of war. The simplest

such model involves forces x(t), y(t) which are effectively isolated apart from

the confrontation between them.

Example: Combat model

The simple system

ẋ = −ay,
ẏ = −bx,

(13.24)

where a, b are positive constants, models the attrition rates of

each force on the other. Determine how the final outcome of a

conflict depends on the initial conditions in this model.
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Evidently (0, 0) is the only critical point and it is a saddle. Indeed

the trajectories are given by

ay2 − bx2 = ay2
0 − bx2

0 ≡ K, (13.25)

where x0, y0 are the initial strengths at t = 0. These are hyperbolic arcs

in general (see Fig. 13.10).

xO

y

K > 0

K < 0

K
= 0

Fig. 13.10

Of course x ‘wins’ if K < 0 and y ‘wins’ if K > 0. One interesting

feature is that the trajectories diverge — the discrepancy between the

two sides becomes more marked as time progresses, so the likely outcome

becomes clearer and the weaker party may be induced to surrender. The

most damaging conflicts are those that start near the line K = 0 which

leads to a ‘draw’ in which both sides are completely annihilated, since in

this case the forces were initially perfectly balanced.

The measure of fighting effectiveness of e.g. force y as ay2
0 at t = 0,

i.e. quadratic in numerical strength, is Lanchester’s Law of Conventional

Combat (1916). Through the ages, the general success of the empirical

rule ‘Divide and conquer!’ is confirmation of the effect of this simple

qualitative law.
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One may also model not the conflict itself but the arms race leading up

to it. Richardson (1939) introduced such a model in the form

ẋ = a2y − c1x+ g1,

ẏ = a1x− c2y + g2.
(13.26)

Here x(t), y(t) are war potentials/armaments of two nations/coalitions,

(a1, a2) are response parameters to the armament of the opponent (note

that in contrast to the example above, these coefficients enter with pos-

itive sign), (c1, c2) are cost deterrents and g1, g2 basic grievances. (See

Problem 8.)

13.5 Limit Cycles

So far we have looked at phase portraits in which the attractors and repellers

have been equilibria which are isolated critical points. For some systems

there are other possibilities. Rayleigh’s equation (1883)

ẍ− εẋ(1 − ẋ2) + x = 0, (13.27)

where ε is a positive control parameter, has been used to model various self-

excited oscillations, for example the bowing of a violin string. By reference

to the damped oscillator of §2.5 it is evident that (13.27) has positive or

negative damping respectively according as |ẋ| > 1 or |ẋ| < 1. The sort

of physical system modelled by this equation is illustrated schematically in

Fig. 13.11, where a block is acted upon by a spring and by a dry frictional

force at contact with a belt, which is itself moving uniformly. We may write

Fig. 13.11

(13.27) in the form

ẋ = y,

ẏ = −x+ εy(1 − y2).
(13.28)
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The only critical point is at (0, 0) and is always unstable (spiral or node).

However trajectories come inwards from large values of x and y. The phase

portraits for progressive ε values are sketched in Fig. 13.12.

Fig. 13.12

In each case there is a periodic orbit attractor, which is an asymptoti-

cally stable limit cycle. Other trajectories tend towards this cycle as t→ ∞
and the form of the cycle depends crucially on the parameter ε. As ε in-

creases, the variation of x with time t changes from essentially sinusoidal

in Fig. 13.12(a) to a markedly non-symmetrical oscillation in Fig. 13.12(c).

There is then a sharp rise and fall in x as t varies (see Fig. 13.13(a)). For

this type of oscillation, which is called a relaxation oscillation, there is a

mechanical analogy in the seesaw mechanism (see Fig. 13.13(b)). Here liq-

uid is added at a constant rate to the reservoir on the right-hand side and

periodically tips the balance, so that the reservoir is emptied suddenly and

the cycle can be repeated.
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Fig. 13.13

There are many mechanical and electrical examples of Rayleigh’s equa-

tion and of another which may be derived from it by the substitution

ẋ = v/
√

3. The equation for v is then (see Problem 10)

v̈ − εv̇(1 − v2) + v = 0. (13.29)

This equation was studied by Van der Pol (1926) in order to model various

electrical circuits and in his study of the heartbeat.

A spectacular example of a limit cycle was in the behaviour of the

Tacoma Narrows bridge near Seattle. The cycle of torsional oscillations,

up to 1.5m in the bridge deck, drew its energy from a constant wind flow

across it. The bridge became known as ‘Galloping Gertie’, at least up to

its spectacular collapse on 7 November 1940, fortunately and memorably

recorded on film.

Relaxation oscillations have also been used to model natural phenom-

ena, like geysers and earthquakes.

Analytic demonstration of the existence of limit cycles, both attractors

and repellers, is beyond our scope here, but it is important to note that some

systems exhibit bifurcation phenomena as a control parameter is varied.

Hopf bifurcation

At the end of §13.1 we referred to the way in which critical points and

phase portraits may have very different character when control parameters

are varied. Consider now that the stability of a focus can change as a control

parameter c is varied, in such a way that the system dynamics ‘gives birth’

to a limit cycle. This is usually known as a Hopf bifurcation and it is
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Fig. 13.14

termed supercritical or subcritical respectively according as the resulting

limit cycle is an attractor or repeller. For the supercritical bifurcation an

asymptotically stable focus becomes unstable at a critical value c0 at which

an attracting limit cycle appears. (See Fig. 13.14(a).) For the subcritical

bifurcation an unstable focus becomes asymptotically stable at the critical

value of c, at which a repelling limit cycle appears. (See Fig. 13.14(b).)

The effect of a supercritical Hopf bifurcation is relatively benign (‘soft’)

in that the change results in the system remaining very much in the same

neighbourhood of the phase plane when it is subject to a perturbation.

However, near a subcritical Hopf bifurcation even a small perturbation can

take the system outside the repelling limit cycle and then far away in the

phase plane, despite the asymptotic stability of the critical point in the

linear analysis — the effect is ‘hard’.

The ‘Brusselator’ is a simple model of chemical oscillation proposed by

Prigogine and Lefever (1968).
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Example: The ‘Brusselator’

The chemical concentrations x(t), y(t) of two particular reactants

are related by the equations:

ẋ = a− (1 + b)x+ x2y,

ẏ = bx− x2y.
(13.30)

Here a, b are concentrations of other reactants which, once cho-

sen, are kept constant, with a, b both positive. Find the nature

of the attractors for this model.

There is only one critical point, at (a, b/a), with Jacobian matrix
[

b− 1 a2

−b −a2

]

.

In consequence the critical point is asymptotically stable when b < 1+a2.

When b > 1+a2 the critical point is unstable (a spiral or node according

as b < or > (1 + a)2). At b = 1 + a2 there is a supercritical Hopf

bifurcation, so that the unstable critical point is accompanied by a limit-

cycle attractor (see Fig. 13.15, where a = 1, b = 3).

0 1

1

2

3

4

y

2 3 4 x

Fig. 13.15 Brusselator limit cycle attractor (a = 1, b = 3).
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13.6 Systems of Third (and Higher) Order

We have seen that, for first-order systems, there are point attractors and re-

pellers and, for second-order systems, there may also be limit cycles. Many

higher-order systems are special, in that their dynamical behaviour is effec-

tively lower-dimensional, through, for example, the existence of constants

of the motion. Some important specific examples of this will be given in

Chapter 14 for systems of fourth order and beyond, but in this section we

will consider third-order systems which exhibit certain properties typical of

systems of order higher than second.

Rigid-body rotation

Consider the equations of rotational motion of a rigid body, which were

introduced in §9.8. When the rotation is about the centre of mass and

external forces have zero moment we may, for convenience, choose to ex-

press the equations (9.41) in terms of angular momentum components

(J1, J2, J3) ≡ (I1ω1, I2ω2, I3ω3) to obtain

J̇1 −
(

I2 − I3
I2I3

)

J2J3 = 0 (13.31)

and two similar equations obtained by cyclic interchange of 1, 2, 3. In the

(J1, J2, J3) phase space each trajectory is then the intersection of two sur-

faces (see Problem 12)

sphere: J2
1 + J2

2 + J2
3 = J2,

ellipsoid:
J2

1

I1
+
J2

2

I2
+
J2

3

I3
= 2T,

(13.32)

with J, T constant. The first of these relations expresses the constancy of

the magnitude of the angular momentum vector J and the second expresses

the constancy of the kinetic energy T . (See Fig. 13.16, with principal

moments of inertia such that I1 < I2 < I3.)

If we take J to be fixed and look at the critical points on the correspond-

ing phase sphere, it is evident that Fig 13.16 confirms the results obtained

in §9.8, since the saddle-point geometry leading to instability is at the axis

of the intermediate principal moment of inertia, while the centres are at the

axes of the largest and the smallest moment. The result holds, of course,

for all rigid bodies (from a match-box to a space station), but it is often

known as the tennis racquet theorem.
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Fig. 13.16

When there is axial symmetry of the rigid body, as in §9.9, there is sim-

ilar symmetry in the phase space. (See Fig. 13.17, with principal moments

of inertia such that I1 = I2 < I3.)

In this case J3 is constant so that J3 = I3Ω (say), while the components

J1, J2 of angular momentum are simple harmonic with frequency [(I3 −
I1)/I1]Ω. Relative to axes fixed in space J is itself fixed and the angular

velocity vector ω precesses around J in the way described in §9.9. In

the case ω1, ω2 � Ω then this precession rate is given approximately by

(I3/I1)Ω. Hence the precession rate for the Chandler wobble of the Earth

is about Ω (i.e. once per day), while the precession rate is about 1
2Ω for a

spun pass with an American football and about 2Ω for a spun coin, discus

or dinner plate!

The problem of rotational motion, when the external force moment G is

not special, can be very complicated, although it is of course an important

one for many feedback control problems in, for example, the aerospace

industry. Some of the complexity which may result is indicated by the

following examples of other physical systems.
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Fig. 13.17

The Lorenz system

The system of equations

ẋ = σ(y − x),

ẏ = ρx− y − xz,

ż = −βz + xy,

(13.33)

where σ, ρ, β are positive control parameters, is an important system which

was originally put forward by Lorenz in 1963 to provide a very simple and

idealized model of convection in a slab of fluid. The aim was to gain insight

into the dynamics of weather systems. (See Fig. 13.18.)

For a general discussion of the origins of this system, see Lorenz, The

Essence of Chaos, UCL Press (1993).

The parameters have the following physical meaning, after scaling:

• σ quantifies the ratio of diffusion rates of momentum and heat in the

fluid (σ ≡ kinematic viscosity/thermal conductivity).

• ρ quantifies the temperature difference applied across the slab of fluid.

• β quantifies the slab geometry through an aspect ratio.
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Fig. 13.18

Despite its geophysical origin the system (13.33) and its wide range of

behaviours have been the subject of extensive study, particularly because

the system finds application in other physical contexts, for example in the

study of lasers.

It is instructive (from both a practical and a theoretical point of view)

to look at the (x, y, z) phase space, say with σ, β fixed and with a sequence

of different values of ρ. We can find the critical points of the system and

examine their local character through the methods of §13.3 and Appendix

C, suitably extended. However the characteristic equation is now a cubic, so

that there are three eigenvalues, although the general principles, with regard

to stable and unstable manifolds according to the sign of real eigenvalues,

still apply.

When σ, β are indeed fixed the behaviour of the system (13.33) in the

(x, y, z) phase space can be summarized as follows (see Problem 14):

• 0 < ρ < 1: The origin P1 ≡ (0, 0, 0) is the only critical point of the

system, and it is a point attractor. This corresponds physically to

the case of no motion and steady heat conduction across the slab (see

Fig. 13.19(a)).

• 1 < ρ: The origin P1 is now unstable and two new critical points

appear,

P2, P3 ≡
(

±
√

β(ρ− 1),±
√

β(ρ− 1), (ρ− 1)
)

.

It can be shown that when:

* 1 < ρ < ρcrit =
σ(σ + β + 3)

(σ − β − 1)
in the practical case σ > β + 1,
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all the eigenvalues in the analysis of P2, P3 are negative real or

have negative real part, so that P2, P3 are point attractors. This

corresponds physically to steady convection rolls in either of the

two senses (see Fig. 13.19(b)).

* ρcrit < ρ, the points P1, P2, P3 are all unstable, so that a single

point attractor does not exist. In fact the loss of asymptotic stabil-

ity of P2, P3 can be shown to be via a subcritical Hopf bifurcation.

Fig. 13.19

We can show that trajectories are attracted towards a bounded region

containing the points P1, P2, P3 and there should be an attractor, since

∇ · ẋ =
∂ẋ

∂x
+
∂ẏ

∂y
+
∂ż

∂z
= −(σ + 1 + β) < 0 (13.34)

everywhere, which means that the phase-space volume elements are reduced

progressively in volume by the flow ẋ. (See §12.5 and relation (A.24).)

In fact, it turns out that there is a value ρ̄, such that for ρ̄ < ρ there

is a highly disordered motion, which corresponds physically to turbulent

convection. Trajectories in the phase space tend asymptotically towards

a structure which is multi-leaved on a hierarchy of scales (a ‘fractal ’) and
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looped around the unstable critical points P2, P3. This is called a chaotic

or strange attractor, on account of its peculiar properties. (See for example,

Fig 13.20 in which σ = 10, β = 8
3 and ρ = 28, so that ρcrit = 24.74).

Fig. 13.20 Lorenz attractor [Lanford, (Lecture Notes in Mathematics, 615, 114,
Springer 1977)]

For the particular values of σ, β chosen here a strange attractor of this

general type is found to occur when ρ > ρ̄ = 24.06. Evidently in a (here)

small range ρ̄ < ρ < ρcrit there are actually three attractors — two points

(steady convection) and one strange (turbulent convection). In practice

each of these will have its own basin of attraction of states attracted to

it, so that the attractor which is observed to occur depends on the initial

state of the system. The strange attractor has zero phase-space volume on

account of (13.34) above, and a fractal geometric structure. However, states

which are close initially are stretched out along the attractor exponentially

with time. The latter property is characteristic of chaotic systems and

there is more discussion of this property in the following section (§13.7).

The Rikitake two-disc dynamo

In order to model irregular reversals of the Earth’s magnetic field Rikitake

put forward (in Proceedings of the Cambridge Philosophical Society, 54, 89–
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105, 1958) a system containing two identical coupled disc dynamos which

does mimic this type of behaviour. (See Fig. 13.21.)

Fig. 13.21

If X1, X2 are scaled currents and Y1, Y2 are scaled rotation rates of the

discs, which are driven by a constant external torque, the current in each

disc feeds the coil of the other. Then the equations may be written

Ẋ1 = Y X2 − µX1,

Ẋ2 = (Y −A)X1 − µX2,

Ẏ = 1 −X1X2,

(13.35)

where Y ≡ Y1 = Y2 +A and A, µ are control parameters, with µ positive.

For this system there are two critical points in the (X1, X2, Y ) phase

space, at (±k,±1/k, µk2), where A = µ(k2 − 1/k2). (See Problem

15.) Although the three eigenvalues in the local linear approximation

are −2µ,±i
√

k2 + 1/k2, the apparent centre behaviour associated with the

pure imaginary pair of eigenvalues is here not carried through for the full

system. The critical points correspond to senses of North/South magnetic

polarity and the irregular reversals which are associated with this model

(see Fig. 13.22) mimic the field reversals of the Earth’s magnetic field which

are known, from the interpretation of geological records, to have occurred

at irregular intervals during more than the last 160 million years.

There is, of course, no suggestion that the two-disc dynamo provides

other than an interesting analogy for features of the magnetohydrodynamic
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Fig. 13.22 Projection on the (X2, Y ) plane of a trajectory in phase space for µ = 1, K =
2 [Cook and Roberts (Proceedings of the Cambridge Philosophical Society, 68, 547–569,
1970)]

motions in the Earth’s core — it is a ‘toy’ system.

The forced damped pendulum

If the simple pendulum of §2.1 and §13.3 is subjected to damping and

forcing we may write the equation of motion in the form

mlθ̈ + λθ̇ +mg sin θ = F cosΩt, (13.36)

where m, l, λ, g, F,Ω are control parameters.

This equation may be scaled suitably, so that we study the equivalent

third-order autonomous system

θ̇ = ω,

ω̇ = −Aω − sin θ +B cosφ,

φ̇ = Ω,

(13.37)

where A,B,Ω are control parameters.

The nonlinearity of this system, through the sin θ, cosφ terms, makes

for a very rich variety of behaviour as A,B,Ω are changed.
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The variety of behaviours instanced in this whole section is common

for third- and higher-order continuous systems, but systems have to be

‘special’ in order to be effectively reducible to lower order via, for example,

constants of the motion. Systems need to be of at least third order if they

are to exhibit chaotic behaviour.

13.7 Sensitivity to Initial Conditions and Predictability

An important consequence of the effective order of a dynamical system is

in the way that the resulting dimension of the phase space can restrict the

evolution along trajectories of states which may be initially close together.

In the line and plane, typically, states which are initially close, whose tra-

jectories remain in a bounded region and do not intersect one another, move

apart at a rate which is at most essentially uniform, on average.

If we examine a dynamical system with closed trajectories in phase

space, we can examine the evolution of two neighbouring initial states

P ≡ (x0, y0), Q ≡ (x0 + ∆x0, y0 + ∆y0).

(See Fig. 13.23.)

Fig. 13.23

Now, if the system is the simple harmonic oscillator (see §13.3) then, in

this special case, the period along each closed orbit is the same and it can

be shown that the (‘Pythagorean’) distance in phase space between P and

Q remains bounded in time. This behaviour is not typical and, if Fig. 13.23
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is taken to represent, for example, libration motions of a simple pendulum,

it should be evident that different orbits have different periods. For this,

the more typical situation, the distance between P and Q increases broadly

linearly with time, as measured along the orbit. A useful analogy is to

consider runners travelling at slightly different rates in neighbouring lanes

of a running track (see Problems 16, 17).

In three- and higher-dimensional phase spaces the neighbouring trajec-

tories can diverge exponentially from one another within a bounded region,

without crossing one another. They can do this by wrapping over and under

one another in a complex tangle, which may still have a layered structure.

(See Fig. 13.20 and Fig. 13.22.) This geometrical behaviour is central to

the ‘strangeness’ of a strange attractor to which we referred in §13.6. The

states which are initially close move apart, in such a way that the distance

d in phase space between them increases with time, on average, like eλt,

with λ positive. (See Fig. 13.24.)

Fig. 13.24

The parameter λ in the exponent is called a Lyapunov exponent . When

a typical small volume of initial states in phase space is considered, it is

evident that dynamical evolution will result, in general, in stretching and

squeezing of this volume. There will be a number of principal deforma-

tions, which is equal to the dimension of the phase space, leading to a set

of Lyapunov exponents. Each of the positive exponents leads to a corre-

sponding strong divergence of initial states. We can evidently test flows in

phase space for this divergence property. The strong divergence is called

sensitivity to initial conditions and it is the prime property which identifies

the irregular behaviour now called chaos .
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The effect on the global behaviour of dynamical systems produced by

sensitivity to initial conditions is often called the butterfly effect , which was

first put forward by Lorenz in an address to the American Association for

the Advancement of Science in December 1972 — ‘Predictability: Does the

flap of a butterfly’s wings in Brazil set off a tornado in Texas?’ — printed

in his book The Essence of Chaos referred to above in the description of the

Lorenz system (13.33). The point he was making is that chaotic regimes in

weather systems can render predictions of them utterly useless, except on a

very short time scale. The term ‘butterfly effect’ has become a much used

metaphor for describing chaos, which has experienced an explosive growth

in application.

The consequences for all dynamical systems and for the real situations

they model are immense. A direct attack is made on the long-standing

philosophical idea of determinism and on the concept of a ‘clockwork uni-

verse’. The Laplacian point of view identifies the initial state of a system

as the cause, from which (if it is known precisely) the effects may be cal-

culated with infinite precision indefinitely far into the future, or into the

past. There is, in this world view, no room for chance or free will.

The sensitivity to initial conditions, which is typical of many, if not most,

systems and is made very apparent by the geometrical approach pioneered

by Poincaré, leads to a loss of predictability. This comes about because the

inevitable imprecision in the initial description of even a classical system,

however small this may be, leads later to a vastly greater imprecision in

its predicted fate. It is in this way that deterministic systems, where the

mechanisms may be known completely and precisely, can have an essentially

stochastic (‘random’) output, so that outcomes can be predicted only as a

matter of probability.

A good illustration of this apparent paradox is provided by the Galton

board (see Fig. 13.25) where small spheres of lead shot fall through a regular

array of scattering pins.

The path of an individual piece of lead shot, which falls through such

an array of pins, is impossible to predict, because of the sensitivity of the

collisions at individual pins. However the typical outcome for the resulting

distribution of shot along the channels at the base is, in this case, very like

the normal probability distribution. In this way predictability of the fate

of an individual piece of lead shot gives way to a collective predictability

for many pieces in the form of chance. (See Problem 18.)
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Fig. 13.25

13.8 Summary

The analysis of the geometry of dynamical systems in phase space is a

very powerful way of investigating their behaviour for all possible initial

conditions. The dynamics is dependent crucially on attractors and on their

stability.

For systems which are dynamically one-dimensional or two-dimensional

the only attractors are critical points (equilibria) in the phase line and the

phase plane and, for the latter, limit cycles. As control parameters are

varied, the character of critical points and limit cycles may change, so that

there is a corresponding change in the phase portraits and in the behaviour

of the system.

In systems of third (or higher) order additional attractors may arise

which can have a fractal and sensitive structure — strange (chaotic) at-

tractors.

In the phase plane the system trajectories are constrained such that

the divergence of initial states takes place essentially at a uniform rate,

at most. For a strange attractor, in systems of third or higher order, the

divergence will be essentially exponential and this leads to a breakdown of

predictability. The consequence is that deterministic systems can produce

effectively stochastic output. This has profound implications for our view
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of physical and other dynamical systems; it can also be expected to affect

the relationship between classical physics and its quantum counterpart.

Problems

1. The population x(t) of fish in a pond is a function of time t and when the

fish are removed at a constant rate f the function x(t) satisfies equation

(13.6).

(a) Show that there is a critical fishing rate f̄ such that for f < f̄ there are

two equilibrium fish populations, of which only one is asymptotically

stable.

(b) If the fish population is initially in stable equilibrium (with f = 0

and fishing commences at a rate f > f̄ , show that x → 0 and in a

finite time t0 (which need not be found explicitly!).

Why would it not be prudent to fish at a rate f which is only just less

than f̄?

2. For the pendulum equation θ̈ + (g/l) sin θ = 0 find the equations of

the trajectories in the phase plane and sketch the phase portrait of the

system. Show that on the separatrices

θ(t) = (2n+ 1)π ± 4 arctan[exp(ωt+ α)],

where n is an integer, α = constant and ω =
√

g/l. [Hint : Use the

substitution u = tan 1
4{θ − (2n+ 1)π}.]

3. The relativistic equivalent of the simple harmonic oscillator equation for

a spring with constant k and a rest mass m0 attached is

d

dt

(

m0y
√

1 − y2/c2

)

+ kx = 0 with ẋ = y,

where c is the speed of light. Show that the phase trajectories are given

by

m0c
2/
√

1 − y2/c2 + 1
2kx

2 = constant

and sketch the phase portrait for this system.

4. Draw the phase portrait of the damped linear oscillator, whose displace-

ment x(t) satisfies ẍ + µẋ + ω2
0x = 0, in the phase plane (x, y), where
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y = ẋ. Distinguish the cases

(a) under- (or light) damping 0 < µ < 2ω0,

(b) over-damping µ > 2ω0,

(c) critical damping µ = 2ω0.

5. Consider the gradient system (13.17) in the case U(x, y) = x2(x−1)2+y2.

Find the critical points and their character. Sketch the phase portrait

for the system.

6. For the Lotka–Volterra system (13.18) show that the trajectories in the

phase plane are given by f(x, y) = constant as in (13.20). In the first

quadrant x ≥ 0, y ≥ 0, the intersections of a line y = constant with a

trajectory are given by −c lnx+ dx = constant. Hence show that there

are 0, 1 or 2 such intersections, so that the equilibrium point (c/d, a/b)

fore this system is a true centre (i.e. it cannot be a spiral point). Using

the substitution x = ep, y = eq, show that the system takes on the

Hamiltonian canonical form (13.22).

7. Consider the ‘competing species’ system (13.23). For the case k1 =

σ1 = α1 = 1, k2 = 1
2 , σ2 = 1

4 , α2 = 3
4 find the critical points and their

character in order to confirm all the features of Fig. 13.9. What happens

in the case k1 = 1, σ1 = 2, α1 = 1
2 , k2 = 3, σ2 = 2, α2 = 4?

8. For the Arms-Race model system (13.26) with all parameters positive

show that there is an asymptotically stable coexistence or a runaway

escalation according as c1c2 > a1a2 or c1c2 < a1a2.

9. *A simple model for the dynamics of malaria due to Ross (1911) and

Macdonald (1952) is

ẋ =
(

abM
N

)

y(1 − x) − rx,

ẏ = ax(1 − y) − µy,

where:

x, y are the infected proportions of the human host, female mosquito

populations,

N,M are the numerical sizes of the human, female mosquito populations,

a is the biting rate by a single mosquito,

b is the proportion of infected bites that result in infection,

r, µ are per capita rates of recovery, mortality for humans, mosquitoes,

respectively.

Show that the disease can maintain itself within these populations or
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must die out according as

R =
M

N

a2b

µr
> 1 or < 1.

10. Show that Rayleigh’s equation in the form (13.28) has a single critical

point at (0, 0) and that this is always unstable. Making use of substitu-

tion ẋ = v/
√

3 show that v satisfies the Van der Pol equation (13.29).

11. Show that the origin is the only critical point for the system

ẋ = −y + αx(β − x2 − y2),

ẏ = x+ αy(β − x2 − y2),

where α, β are real parameters, with α fixed and positive and β allowed

to take different values. Show that the character of the critical point

and the existence of a limit cycle depend on the parameter β, so that

the system undergoes a supercritical Hopf bifurcation at β = 0. (Hint :

Make the change from Cartesian co-ordinates to plane polars.)

12. *For the rotation of a rigid body about its centre of mass with zero

torque the equations for the angular momentum components J1, J2, J3

are given by (13.31).

(a) Show that J2
1 + J2

2 + J2
3 = J2 (constant), so that the angular mo-

mentum J must lie on a sphere in (J1, J2, J3) phase space.

(b) When I1 < I2 < I3 show that there are six critical points on this

phase sphere and show that, in local expansion, four of these are

centres and two are saddles. (Hence the tennis racquet theorem of

§13.6.)

(c) Show that when I1 = I2 �= I3 then J3 is constant (≡ I3Ω) and that

J1, J2 are simple harmonic (with frequency [|I3 − I1|/I1]Ω).

(d) A space station with I1 < I2 < I3 is executing a tumbling motion

with ω1, ω2, ω3 nonzero. It is to be stabilized by reducing ω to 0

with an applied torque −|µ|ω, with µ constant, so that the right-

hand side of (13.31) becomes −|µ|ω1, etc. About which of its axes

does the space station tend to be spinning as ω → 0?

13. *The simple SIR model equations for the transmission of a disease are

Ṡ = −aSI,
İ = aSI − bI,

Ṙ = bI,
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where S(t), I(t), R(t) are respectively susceptibles, infectives, re-

moved/recovered and a, b are positive constants.

(a) Show that the overall population N = S+I+R remains constant, so

that we may consider (S, I) in a projected phase plane. Hence show

that a trajectory with initial values (S0, I0) has equation I(S) =

I0 + S0 − S + (b/a) ln(S/S0).

(b) Using the function I(S) show that an epidemic can occur only if

the number of susceptibles S0 in the population exceeds the thresh-

old level b/a and that the disease stops spreading through lack of

infectives rather than through lack of susceptibles.

(c) For the trajectory which corresponds to S0 = (b/a) + δ, I0 = ε

with δ, ε small and positive, show that, to a good approximation,

there are (b/a)− δ susceptibles who escape infection [the Kermack–

McKendrick theorem of epidemiology (1926/27)].

14. *Consider the Lorenz system (13.33).

(a) Show that the origin P1 (0, 0, 0) is a critical point and that its sta-

bility depends on eigenvalues λ satisfying the cubic

(λ+ β)[λ2 + (σ + 1)λ+ σ(1 − ρ)] = 0.

Hence show that P1 is asymptotically stable only when 0 < ρ < 1.

(b) Show that there are two further critical points

P2, P3 ≡ [±
√

β(ρ− 1),±
√

β(ρ− 1), (ρ− 1)],

when ρ > 1, and that their stability depends on eigenvalues λ satis-

fying the cubic

λ3 + λ2(σ + β + 1) + λβ(σ + ρ) + 2σβ(ρ− 1) = 0.

(c) Show that when ρ = 1 the roots of the cubic in (b) are 0,−β,−(1+σ)

and that in order for the roots to have the form −µ,±iν (with µ, ν

real) we must have

ρ = ρcrit =
σ(σ + β + 3)

(σ − β − 1)
> 0.

(d) By considering how the roots of the cubic in (b) change continuously

with ρ (with (σ, β kept constant), show that P2, P3 are asymptoti-

cally stable for 1 < ρ < ρcrit and unstable for ρ > ρcrit.
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(e) Show that if z̄ = z − ρ− σ, then

1
2

d

dt
(x2 + y2 + z̄2) = −σx2 − y2 − β[z̄ + 1

2 (ρ+ σ)]2 + 1
4β(ρ+ σ)2,

so that (x2 + y2 + z̄2)1/2 decreases for all states outside any sphere

which contains a particular ellipsoid (implying the existence of an

attractor).

15. *For the Rikitake dynamo system (13.35):

(a) Show that there are two real critical points at (±k,±1/k, µk2) in the

(X1, X2, Y ) phase space, where k is given by A = µ(k2 − 1/k2).

(b) Show that the stability of these critical points is determined by eigen-

values λ satisfying the cubic

(λ+ 2µ)

[

λ2 +

(

k2 +
1

k2

)]

= 0,

so that the points are not asymptotically stable in this approxima-

tion. (For the full system they are actually unstable.)

(c) Show that the divergence of the phase-space flow velocity is negative,

so that the flow causes volume to contract.

(d) Given that Ȳ =
√

2(Y −A/2), show that

1
2

d

dt
(X2

1 +X2
2 + Ȳ 2) = −µ(X2

1 +X2
2 ) +

√
2Ȳ

and use this result to determine in which region of the space the

trajectories all have a positive inward component towards X1 =

X2 = Ȳ = 0 on surfaces X2
1 +X2

2 + Ȳ 2 = constant.

16. For the simple harmonic oscillator system (13.8) we may solve for the

equation of the trajectory which passes through x(x0, y0, t), y(x0, y0, t).

If we now consider perturbations ∆x0,∆y0 in the initial data (x0, y0)

at t = 0, find the resulting changes ∆x,∆y in x, y and show that

they remain bounded in time, so that the Pythagorean distance d ≡
√

(∆x)2 + (∆y)2 then remains bounded.

17. *In contrast to Problem 16, consider the perfectly elastic bouncing of a

ball vertically under gravity above the plane x = 0. We have ẋ = y, ẏ =

−g and we can solve for x(x0, y0, t), y(x0, y0, t) in terms of the initial

data (x0, y0) at t = 0. Show that in this case the resulting perturbations

∆x,∆y essentially grow linearly with time t along the trajectory when

we make perturbations ∆x0,∆y0 in the initial data. That is to say the
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distance along the trajectory d ≡
√

(∆x)2 + (∆y)2 ∼ κt when t is large

and κ is a suitable constant.

18. For the Galton board of Fig. 13.25 we may arrange things so that each

piece of lead shot has an equal chance of rebounding just to the left or

to the right at each direct encounter with a scattering pin at each level.

Show that the probabilities of each piece of shot passing between the pins

along a particular row n are then given by
(

n
r

)

(1
2 )n where the binomial

coefficient
(

n
r

)

= n!/[(n − r)!r!] and r = 0, 1, . . . , n. Use the result
(

n+1
r+1

)

=
(

n
r

)

+
(

n
r+1

)

to generate the probability distribution for row n =

16. (For large numbers of pieces of shot and large n the distribution of

shot in the collection compartments approximates the standard normal

error curve y = k exp(−x2/2s2) where k, s are constants.)



Chapter 14

Order and Chaos in

Hamiltonian Systems

In this chapter we consider the geometrical aspects of the particular class

of dynamical systems which have the Hamiltonian structure described in

Chapter 12. The dynamics of these systems depends crucially on the num-

ber of symmetries which they possess, leading to conserved quantities. It

will become apparent that the larger the number of symmetries the greater

is the restriction in the freedom of a trajectory in the corresponding phase

space and the more ordered is the motion. In contrast a deficit in the num-

ber of such symmetries allows the development of irregularity, or chaos, in

the evolution of states along the system trajectories.

14.1 Integrability

In §12.6 we discussed the direct relation between symmetries and conserva-

tion laws, indicating that conserved quantities (constants of motion) may

be used to reduce progressively the effective order of a system. If there

are enough symmetries and independent conserved quantities, then the re-

duction may be complete, in that it leads to the full solution of the sys-

tem of equations (‘integrability’). For a system with n degrees of freedom

the Hamiltonian H may depend on the co-ordinates q1, . . . , qn, momenta

p1, . . . , pn and on time t. While there is no unique definition of integra-

bility, it turns out that, for the complete solution to be obtainable via a

sequence of integrations, we need n independent functions Fi (i = 1, . . . , n)

of the same variables, which are themselves constants of the motion. That

is to say, we require the same number of symmetries as there are degrees of

freedom in the system and the system is then said to be ‘integrable (in the

sense of Liouville)’. If there is not such a full set of n conserved quantities

then the system is said to be non-integrable.

347
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Recalling (12.33),

dFi
dt

=
∂Fi
∂t

+ [Fi, H ] = 0. (14.1)

We will confine our discussion here to autonomous systems, for which

H and other Fi have no explicit dependence on t, and we then have n

Poisson-bracket relations [Fi, H ] = 0 from (14.1). Of course H itself can

be taken as one of the functions Fi and the invariance of H corresponds to

symmetry with respect to time translation.

An additional technical condition required of the Fi is that for each pair

of them we require

[Fi, Fj ] = 0 for i, j = 1, . . . n. (14.2)

The functions Fi are then said to be in involution.

Each of the n functions Fi = constant confines a particular trajectory

to a (2n−1)-dimensional subspace of the full 2n-dimensional phase space of

the system. So the complete set of these restrictions confines a trajectory to

the n-dimensional intersection M of these subspaces. That this is a strong

dimensional restriction on the way that a trajectory can move in the full

phase space is indicated by Table 14.1.

Table 14.1

Number of degrees of freedom 1 2 3 n

phase space 2 4 6 2n

Dimension of: surface Fi = constant 1 3 5 2n − 1
M 1 2 3 n

Naturally the values of co-ordinates and momenta at a given initial time

determine the n values of the Fi constants and hence pick out the particular

M to which the trajectory having these initial values is then confined for

all time.

Now at each point on a particular (2n − 1)-dimensional surface Fi =

constant, the normal to the surface is in the direction given by the 2n-

component gradient vector (∇qFi,∇pFi). (See §A.5.)

The Poisson-bracket relation (14.2) is a scalar-product relation and it

expresses the orthogonality conditions between members of a set of n vector

fields vj = (∇pFj ,−∇qFj), j = 1, . . . , n and the above gradient vector. It

is apparent therefore that the vector fields vj at a particular point in the

phase space are all parallel to the surface M which contains that point. The
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fields vj allow us to define a co-ordinate grid continuously over the surface

M and without any singularity. The topology of M is then necessarily

that of a torus — an n-dimensional ‘ring doughnut’ embedded within the

full 2n-dimensional phase space.

For a system of one degree of freedom each M is a 1-torus F1 ≡ H =

constant, i.e. a one dimensional loop in the two-dimensional phase space.

(See Fig. 14.1(a).) Evidently v1 here is tangent to the curve at each point

of M . For different values of F1 we obtain different loops M , members of

a set of ‘nested’ tori, as for example in Fig. 13.4.

For a system of two degrees of freedom each M is a 2-torus, i.e. a

two-dimensional ‘ring doughnut’ surface embedded in the four-dimensional

phase space. (See Fig. 14.1(b).) In this case we can take v1,v2 everywhere

parallel to distinct loops which can parametrize the surface. It is the case

that M cannot have, for example, the topology of a sphere, because all

v1,v2 parametrizations of such a surface are necessarily singular, at least

somewhere. In Fig. 14.1(c) the attempt to use a grid of lines of latitude

and longitude is singular at the poles. That all such attempts for a sphere

are bound to be singular is a consequence of the ‘hairy ball theorem’ of

topology; this theorem also implies, among other things, the existence of

at least one crown parting in the combing of a head of hair, and that a

spherical magnetic bottle must leak!

Fig. 14.1

The n-tori for an integrable system of n degrees of freedom in its 2n-

dimensional phase space are often called invariant tori because a trajectory

(orbit) which is initially on one of them (M ) remains on it for ever. Dif-

ferent initial conditions then lead to tori which are nested within the phase

space.
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On a particular torus M the separate vector fields correspond to n in-

dependent types of linking circuit (see Fig. 14.1(a),(b)), and the integrable

motion is then exactly equivalent to the combination of n separate corre-

sponding periodic motions, one for each type of linking circuit. Each of

these periodic motions of an integrable system is a nonlinear normal mode,

similar to those detailed in §11.3, but now with an analysis which is ex-

act — no approximation has been made for small oscillations. This makes

integrability a very special property.

The separate normal modes have associated natural frequencies ωi, i =

1, . . . , n on a particular torus M and any trajectory on M has n associated

natural periods 2π/ωi. The trajectory is then said to be multiply periodic.

If the trajectory on M is closed (see Fig. 14.2(a)) then it does not fill

M and is exactly periodic. For closure it is required that the frequencies

of the the modes are rationally related, i.e. ωi/ωj is rational for all i, j.

This degeneracy is the exception rather than the usual case, so that closure

is a special property. If the trajectory on M is not closed, because of

irrational ωi/ωj , then typically the trajectory covers M densely eventually

(see Fig. 14.2(b)) — we have quasiperiodicity and the trajectory is said to

be ergodic on M .

Fig. 14.2

Two important examples are given by:

Example: Double harmonic oscillator and central force motion

Find suitable independent constants F1, F2 for

(a) the double harmonic oscillator,

(b) central force motion.
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Are trajectories closed?

(a) For the double harmonic oscillator we have

H =
1

2m
(p2

1 + p2
2) + 1

2m(ω2
1q

2
1 + ω2

2q
2
2) ≡ H1 +H2 (14.3)

with H1, H2 the Hamiltonians for the two separate oscillators. Here we

may take F1, F2 to be any pair of H,H1, H2, since then [Fi, H ] = 0. The

frequencies are ω1, ω2 and this evidently leads to closed trajectories (pe-

riodicity) only when ω1/ω2 is rational, leading to the familiar Lissajous

figures.

(b) Central-force motion was discussed in Chapter 4. The Hamilto-

nian takes the form (12.8) and we can take F1 = H,F2 = pθ, so that

[Fi, H ] = 0. For the isotropic harmonic oscillator of §4.1 we can take

ω1 = ω2 in (14.3) above, so that all trajectories are closed. The oscillator

describes an ellipse with centre at the origin and the frequencies of radial

and transverse motions are related by ωr = 2ωθ. For the inverse square

law attractive force of §4.3 all bounded trajectories are closed. They are

ellipses in general, with the centre of force at a focus and ωr = ωθ. That

the isotropic harmonic oscillator and the inverse square law of attraction

are the only such force laws for which all bounded orbits are closed is

known as Bertrand’s theorem.

14.2 Surfaces of Section

If we consider two dynamical states which are initially close in the phase

space of an integrable system, they do, in general, have different values of

F1, F2 and so they reside on different tori. The evolution of these states

along their respective trajectories takes place with slightly different frequen-

cies, so that the distance between the states increases essentially linearly

with time t. So, just as for the discussion of the libration motions of a

simple pendulum in §13.7, there is for an integrable system no exponential

divergence of states with time and no sensitivity to initial conditions — the

motion is ordered.

When a full complement of constants of the motion does not exist,

so that we have a system which is not integrable, then trajectories have

much less restriction on their room to manoeuvre and sensitivity to initial



352 Classical Mechanics

conditions is certain in at least some regions of the phase space — there is

then inevitably chaotic behaviour, as indicated in §13.7.

A method of detecting these ordered and chaotic behaviours was put

forward by Poincaré and involves the concept of a surface of section. If

we consider an autonomous system with two degrees of freedom, so that

we have a four-dimensional phase space, with three-dimensional surfaces

of constant ‘energy’ (H = constant), then we can consider taking a ‘slice’

through the space, and this may or may not be planar according to conve-

nience.

If we look at a particular trajectory of the system and identify the points

at which this intersects the section (in the same sense) then the dynamics

induces a map of the section to itself. In Fig. 14.3 we haveH(q1, q2, p1, p2) =

constant and we have chosen a section q2 = 0 (with p2 > 0) to demonstrate

how a trajectory maps points in the (q1, p1) plane successively.

Fig. 14.3

When we map different (q1, p1) points using different trajectories we

develop a Poincaré return map of the section to itself.

For integrable systems we may take a section through the nested tori

of §14.1. For two degrees of freedom the section through a 2-torus (ring

doughnut) is a closed curve C (see Fig. 14.4) and a particular point P0 on

this curve is mapped successively by the trajectory through it to P1, then

P2, and so on. If the trajectory is closed (see §14.1) then we have a periodic

motion and the map has the property that after N steps, for some integer

N , it carries P0 back to P0. The successive points P are twisted around

the curve C. If the motion is only quasiperiodic, however, there is no such



Order and Chaos in Hamiltonian Systems 353

Fig. 14.4

exact repetition and the successive points P eventually fill the whole curve

C. Integrable systems are characterized by a finite set of discrete points or

by curve-filling in the surface of section.

For systems which are not integrable the full torus structure does not

exist. For two degrees of freedom we expect the system to explore the

full three-dimensional ‘energy’ surface. The section return map is then

generally two-dimensional and is not confined to points and lines. Systems

which are non-integrable are characterized by area-filling in the surface of

section.

It should be noted that the Poincaré return map for a Hamiltonian

system can be shown to be area-preserving. This property is related to

Liouville’s theorem, treated in §12.5, although it is not derivable from it.

Despite the equal-area property, the map induced by a particular dynamical

system typically involves stretching and squeezing of finite and infinitesi-

mal area elements, associated with, respectively, positive and negative Lya-

punov exponents (see §13.7) whose effects balance. When these effects are

combined with a folding of trajectories, necessitated by confinement to a

bounded region of phase space, it is clear that the divergence of neighbour-

ing trajectories leading to the sensitivity to initial conditions of chaos can

then typically occur.

For systems which are not Hamiltonian the concept of a Poincaré return

map for a surface of section is still useful. When the dynamics involves

dissipation the equal-area property is replaced by area reduction at each

iteration of the map — this would be the case e.g. for the Lorenz system of

§13.6 — and here the effect of a negative Lyapunov exponent overcomes the

effect of one which is positive. (There is some reference to the properties

of discrete maps in Appendix D.)
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14.3 Action/Angle Variables

Quite often the initial choice of variables qi, pi (i = 1, . . . , n) used to describe

a system of n degrees of freedom may not be the best.

For integrable systems there is a natural set of co-ordinates and mo-

menta which is particularly convenient and useful. We recall that these

systems have n distinct constants of the motion (Fi = constant) and we

can transform to a new set of co-ordinates φi and momenta Ii, in such a

way that

• the Hamiltonian form of the equations of motion is preserved,

• the new momenta Ii are functions of the Fi,

• the new co-ordinates φi are all ignorable (as in §12.3).

For a suitable choice the φi are angle variables and the Ii are the corre-

sponding canonically conjugate action variables (see Table 14.2).

Table 14.2

Old description New description

(qi, pi) (i = 1, . . . , n) (φj , Ij) (j = 1, . . . , n)

H(qi, pi) K(Ij) ≡ H

q̇i =
∂H

∂pi

φ̇j =
∂K

∂Ij

≡ ωj(Ii)

ṗi = −

∂H

∂qi

İj = −

∂K

∂φj

= 0

It is, of course, apparent that the new momenta Ij are all constants of

the motion and that the evolution of each φj is given by φj = ωjt+βj , where

ωj , βj are constants. Evidently the angle variables evolve at a uniform rate.

Although these are general results, let us consider how the change of

variables may be effected for a system of one degree of freedom (n = 1). For

such an autonomous system we have H = constant (‘energy’) closed trajec-

tories in the phase plane, representing libration motions. (See Fig. 14.5(a).)

We need to choose the action I to be a suitable function of H , such that

the phase plane in the new description is as given in Fig. 14.5(b).

For Hamilton’s equations to be preserved in form it is necessary that

the change of variables (q, p) → (φ, I) preserves areas, so that a suitable

choice for I is derived from the area within the corresponding trajectory in
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Fig. 14.5

the (q, p) phase plane by

I =
1

2π

∮

p dq, (14.4)

as indicated by the equality of the shaded areas //// in Fig. 14.5(a),(b).

Naturally I depends directly on H , and the natural frequency of the system

for the corresponding trajectory is then given by (see Table 14.2)

ω(I) =
∂K

∂I
≡ ∂H

∂I
. (14.5)

It also follows from the preservation of area that the defining relation for φ

is given by

φ =
∂

∂I

∫ q

0

p dq ≡ ω
∂

∂H

∫ q

0

p dq, (14.6)

again as indicated by the equality of the shaded areas \\\\ in

Fig. 14.5(a),(b) for small changes ∆H,∆I in H, I respectively. The ‘angle’

nature of the φ variable can be emphasized by a further change of variables

to polars (R, φ), where R =
√

2I in order to maintain the preservation of

area property. (See Fig. 14.5(c).)

For the oscillator problems of §2.1 and §13.3 we have

H(q, p) =
p2

2m
+ V (q) = E, (14.7)

so that p = ±
√

2m[H − V (q)] and

I =
1

2π

∮

p dq =
2
√

2m

2π

∫ q2

q1

√

H − V (q) dq. (14.8)
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Example: Simple harmonic oscillator

Find action/angle variables for the simple harmonic oscillator.

Here V (q) = 1
2kq

2, so that

I = H/ω0, where ω0 =
√

k/m, (14.9)

since
∮

p dq is the area within an ellipse with semi-axes
√

2H/k and√
2mH . (See Fig. 14.6.)

Fig. 14.6

For the simple harmonic oscillator we have action ≡ en-

ergy/frequency. Evidently

ω =
∂H

∂I
= ω0 (here) (14.10)

and action

I =
p2 + kmq2

2mω0
, (14.11)

with the angle variable

φ =
∂

∂I

∫ q

0

p dq =
∂

∂I

∫ q

0

√

2mω0I − kmq2 dq

= mω0

∫ q

0

dq
√

2mω0I − kmq2

= arcsin

(

q

√

mω0

2I

)

≡ ω0t+ β. (14.12)
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Of course, the original variables q, p can be found in terms of φ, I in the

form

q =

√

2I

mω0
sinφ, p =

√

2mω0I cosφ. (14.13)

These relations, together with the linear evolution of φ with time give the

evolution of the original q, p variables.

The elastic bouncer

For a perfectly elastic ball bouncing normally between two walls (see

Fig. 14.7) the Hamiltonian is H = p2/2m ≡ E = 1
2mv

2. Here the ac-

tion I =
√

2mH L/π so that ω = π2I/mL2 ≡ πv/L and the period of this

‘oscillation’ is τ = 2π/ω = 2L/v (of course).

Fig. 14.7

The results are hardly very surprising for these two cases, but the

method provides a powerful means of obtaining the frequency (and so the

period) of a general nonlinear libration oscillation.

The method may be extended to deal with rotations, which we will not

consider further here, and to deal with systems which have two or more

degrees of freedom. So we have the following:

Central force motion

(See Chapter 4.)
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We may write the Hamiltonian in plane polars in the form

H =
p2
r

2m
+

p2
θ

2mr2
+ V (r) ≡ E, (14.14)

with constants of the motion F1 = H,F2 = pθ. We can then calculate the

action variables as

I2 =
1

2π

∮

pθ dθ = pθ,

I1 =
1

2π

∮

pr dr =

√
2m

2π

∮

√

H − p2
θ

2mr2
− V (r) dr.

(14.15)

Example: Inverse square law

For the inverse square attractive force law V (r) = −|k|/r (see §4.3

and Problem 9) we obtain

I1 = −I2 +
|k|
2

√

2m

−H . (14.16)

Show that in this case the nonlinear normal mode frequencies are

the same, so that the orbits are closed.

Evidently

H = E = − mk2

2(I1 + I2)2
. (14.17)

The Hamiltonian depends only on the action variables, and the corre-

sponding angle variables are ignorable, by design. The natural frequen-

cies for this system are then given by

ω1 = ω2 =
mk2

(I1 + I2)3
≡ m

|k|

(

−2E

m

)3/2

≡ 2π

τ
, (14.18)

where τ is the period. In fact this is just Kepler’s third law of plane-

tary motion (4.32), since the semi-major axis a of the elliptical orbit of

negative energy E is given by a = −|k|/2E (as in (4.30)).

Note that important results for this system have been obtained without

explicit calculation of the form of the angle variables:

• The equality of the natural frequencies of the radial and transverse

modes of oscillation, which leads to orbital closure. (See §14.1.)
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• The relation between the period of oscillation and the energy E of a

bound orbit.

A further important property of the action variables will be indicated later

in §14.5.

14.4 Some Hamiltonian Systems which Exhibit Chaos

We have seen in Chapter 13 and in previous sections of this current chap-

ter that a system must have at least two degrees of freedom in order to

have a phase space of large enough dimension to exhibit any chaotic be-

haviour. Again the system must also then have fewer symmetries (leading

to conservation laws) than are required to give integrability and order.

Orbital motion — n-body problem

In §§14.1, 14.2 we indicated that the central force problem of Chapter

4, with a fixed centre of force and two degrees of freedom, is integrable,

so that it cannot exhibit the property of sensitivity to initial conditions

characteristic of chaos.

This is also true for the two-body problem in the centre-of-mass frame.

(See §7.2.) Less intuitively apparent is that the motion of a particle in a

plane under the inverse square law of attraction to two fixed centres may

also be integrated.

However the three-body problem is, in general, not integrable, even

when it is restricted (as in Chapter 10, Problem 15); this problem, together

with the extension to more bodies, was the strong motivation for Poincaré

in his general considerations for dynamical systems.

The three-body problem has nine degrees of freedom and so gives rise

to a system of differential equations of order eighteen. We may reduce this

to order twelve by making use of the conservation of linear momentum, i.e.

by going to centre-of-mass co-ordinates. By making use of conservation of

energy and conservation of angular momentum we can reduce the order

to eight. By further device and restricting our consideration to motions

which are planar, the order can be reduced to four. This is the best that

can be done in general. Even after all these reductions the problem is

still extremely complicated and has kept mathematicians busy for several

hundred years.

As an indication we can consider the equations of the planar circular

restricted three-body problem (Chapter 10, Problem 15). In the frame of



360 Classical Mechanics

reference rotating with the primary masses M1,M2 about their centre of

mass (see Fig. 14.8), the equations for the third (small mass m) body can

Fig. 14.8

be written in the form

ẍ− 2ωẏ = −∂V
∂x

ÿ + 2ωẋ = −∂V
∂y

.

(14.19)

with

V = − 1
2ω

2(x2 + y2) − GM1

r1
− GM2

r2
,

and

r1 =
√

(x+ a1)2 + y2, r2 =
√

(x − a2)2 + y2.

This system can be expressed in Hamiltonian form with two degrees of

freedom and there is only a single conserved quantity, i.e. the Hamiltonian

itself, so that 1
2 (ẋ2 + ẏ2) + V is a constant, which is known as the Jacobi

integral. While there are some stable equilibria for this system (depending

on the mass ratio M1/M2, see Chapter 12, Problem 12) there are also

motions which are highly chaotic. However, the motion with given initial

conditions is restricted by the curves of zero velocity at which ẋ = 0 = ẏ.

(See Problem 12 of this Chapter.)

Interest in the restricted problem reflects the hierarchical nature of our

Solar System and an increasing interest in space missions. The primaries
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are variously Sun–Jupiter (Chapter 12, Problem 13), Earth–Moon (Problem

12) and so on. The five relative equilibria referred to in Chapter 10, Problem

16 are apparent in these applications — as sites for orbiting observatories

and as staging points for more extended missions by NASA and ESA.

The Lagrangian equilateral triangle rotating in its plane about its centre

of mass is actually a relative equilibrium for the three-body problem with

general masses.

Example: Three-body problem

Show that the three-body problem with three general masses

m1,m2,m3 has a relative equilibrium (with the masses not in a

straight line) if and only if the triangle formed by the masses is

equilateral and find the rotation rate Ω.

Fig. 14.9

Note that the origin in this figure is at the centre of mass. It is

apparent that the masses remain in a plane. Then we have

m1r1 +m2r2 +m3r3 = 0, (14.20)

together with

Gm1m2(r2 − r1)

r312
+
Gm1m3(r3 − r1)

r331
= −m1Ω

2r1, (14.21)
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and two similar equations for m2,m3. From (14.20) and (14.21) we

obtain a relation αr2 + βr3 = 0 where α, β are scalars. Since r2, r3 are

by hypothesis not parallel, we must have α = β = 0, which then leads to

r12 = r31 = a (say). Of course the similar equations give r23 = a also,

and by substitution we obtain Ω2 = G(m1 +m2 +m3)/a
3.

Naturally, stability of this configuration is quite another matter — in

general it is surely unstable and, typically, the system will separate.

The search for exact periodic solutions of the three-body problem has

resulted in an astonishing solution for the case of three equal masses — the

masses follow one another round a ‘figure of eight’ in a plane, visiting in

turn each of the Euler three-body straight-line equilibria with one mass at

the mid-point of the line joining the other two (see Chenciner and Mont-

gomery, Annals of Mathematics, 152, 881–901, 2000). While this solution is

extremely special, it is exact and extensive searches have uncovered further

exotic n-body solutions.

In general the vast majority of n-body systems are chaotic, particularly

on account of close two-body encounters in their evolution.

Charged particle in a magnetic field

In §5.5 as an example of rotating frames of reference we considered the effect

of a magnetic field B on a charged particle moving in an orbit around a

fixed charge. We assumed there that the magnetic field was sufficiently

weak for the quadratic term in B to be neglected, leading to the Larmor

precession of the Kepler elliptical orbit around the magnetic field vector.

If the weak magnetic field approximation is not made, then the equation

of motion of the moving charge can be written relative to the frame which

rotates about the magnetic field with the Larmor frequency in terms of the

Hamiltonian

H =
p2

2m
− |k1|

r
+ 1

2 |k2|ρ2. (14.22)

Here the constant B field defines the z axis and ρ2 = r2 − z2, so that the

Kepler inverse square law force of attraction towards the origin (having full

rotational symmetry about all three axes) is supplemented by a Hooke at-

traction towards the B field axis (having rotational symmetry only about

this axis). As a result the Hamiltonian system is not integrable — it is, in

effect, a ‘many-body’ Hamiltonian and exhibits chaos. This broken symme-
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try of e.g. the classical hydrogen atom is complex, but very important in its

implications for the quantum mechanical treatment of the same problem

(see e.g. Friedrich and Wintgen, Physics Reports, 183, 37–79, 1989).

Tops

In §10.3 and in §§12.3,12.4 we indicated the Lagrangian and Hamiltonian

descriptions of the symmetric top, pivoted at a point on its axis of sym-

metry. The problem has three degrees of freedom and there are three in-

dependent conserved quantities H, pϕ, pψ, so that the system is integrable

and the motions detailed are regular and ordered.

More complicated systems abound when the equations of rotational mo-

tion of an asymmetric body are considered, or where the system involves

rolling motion, so that it is non-holonomic. For example, various asymmet-

ric ‘tops’ appear to exhibit ordered and chaotic motion regimes and this

is common for systems which are modelled by the Euler equations of §9.8

with general torques G.

Billiard systems

After Berry (European Journal of Physics, 2, 91–102, 1981) we can consider

the motion of a point ‘ball’ moving within a closed boundary (see Fig. 14.10)

and bouncing perfectly on the wall. We assume motion in a straight line

between collisions with the wall, simple reflection at each bounce and no

dissipation, i.e. we assume that the Hamiltonian is H = p2/2m within

the enclosure. The ball follows a path just like that of a light ray with a

boundary wall which is a perfect mirror.

Fig. 14.10
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Despite its apparent simplicity, this system turns out to be very rich

and instructive, with dynamics depending particularly on the shape of the

enclosure.

The dynamics can be examined using natural canonical variables, s, p,

where s is the distance measured along the boundary and p = cosα, where

α is the angle of incidence (and reflection) at the wall. (Note that p here is

not the magnitude of the linear momentum, |p|.) This leads to a successive

bounce map (sn, pn) → (sn+1, pn+1) which preserves area and leads to a

Poincaré section for the dynamics — the slice through the overall dynamical

space is the (non-planar) boundary shape.

For motion in a planar region of this kind the system has two degrees

of freedom and H is a constant of the motion. For some special enclosure

shapes e.g. circular (see Fig. 14.11), elliptical (see Fig. 14.12) there is in

each case another conserved quantity leading to integrability and order.

Example: Circular billiard

Fig. 14.11 Billiards in a circle: (a) basic orbit geometry; (b) typical orbit (never
closing); (c) two closed orbits; (d) phase-space trajectories for orbits in (b) and (c).

Show that there is a second conserved quantity (independent of H)

for the circular billiard.
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Evidently the billiard trajectory for a circular enclosure is a succes-

sion of chords, each at the same perpendicular distance from the centre

of the circle. So the angular momentum of the ball about the centre

(= a
√

2mH p, where a is the radius and p = cosα) remains constant

through successive bounces at the boundary. The angular momentum

is the second conserved quantity and is evidently independent of the

Hamiltonian H . Note that when a chord meets the circular boundary

the angle α between it and the tangent to the circle is the same at each

bounce — the bounce map for a particular trajectory therefore consists

of a finite number of points or a line (each at p = cosα) according as the

trajectory is closed or is not closed.

For the elliptical enclosure the second conserved quantity is the product

of the angular momenta of the ball measured about the two foci of the

ellipse. (See Problem 10.)

Fig. 14.12 Orbits in an ellipse: (a) repeatedly touching a confocal ellipse; (b) repeatedly
touching confocal hyperbolae; (c) ellipse billiard mapping.
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In these cases the bounce map (Poincaré section) is made up of points

and lines characteristic of integrability. When the shape of the boundary

is not so special, the bounce map has regions in which there is area filling,

leading to chaos, as well as regions where ordered motion predominates.

(See Fig. 14.13.)

Billiard systems with various different properties have been used to

model other types of physical behaviour.

Fig. 14.13 Oval billiard mapping: 25 orbits followed through 200 bounces.

Dice and coins

The motion when dice and coins are thrown is regular when there are

no external torques, i.e. when moving and rotating through space, with-

out any air resistance. However, there are impulsive forces which act at

each bounce, so that for typical shapes the motion can be highly chaotic.

Whereas billiards (see above) involve a regular object bouncing on an irreg-

ular boundary, dice (and coins) are a sort of ‘dual’ in that they are irregular

objects bouncing on a regular surface. For each of these types of system the

effects of small changes in physical geometry can be large in the statistical

properties of the outcomes (see §13.7), whether any dissipation which may

be present is very small or if it is such as to lead to rapid energy decay.
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For example, when a regular cubical die is subject to a small change

∆ in aspect ratio (away from 1 for the perfect cube), each 1% change in

this geometric measure leads to a 3.4% change, approximately, in the prob-

abilities associated with the faces displayed, a change modelled locally by

∆2
√

2/π(4
√

2/3 − 3) (Berkshire, British Association for the Advancement

of Science, 1985).

The swinging Atwood’s machine

A simple physical system which exhibits a variety of dynamical behaviours

is the swinging Atwood’s machine, which consists of two masses M,m con-

nected by a light inextensible string which passes over a small pulley and

through a small hole in a smooth vertical plane, so that the mass m can

rotate in this plane. The string is such that collisions of masses with pulley

or hole can be discounted. (See Fig. 14.14.)

Fig. 14.14

This system was introduced first by Tufillaro, Abbott and Griffiths

(American Journal of Physics, 52, 895–903, 1984) and has been the subject

of various subsequent papers.

The Hamiltonian for the system is

H =
p2
r

2m(1 + µ)
+

p2
θ

2mr2
+mgr(µ− cos θ), with µ = M/m, (14.23)

and the motion is not, in general, integrable, since H is usually the only

constant of the motion. In the case µ > 1 we can show that the motion

of m is always bounded by a curve of zero velocity (p = 0), which is an

ellipse whose shape depends on the mass ratio µ and on the energy H . (See
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Problem 11.) When µ ≤ 1 the motion is not, in general, bounded for any

energy and eventually the mass M passes over the pulley.

The system is integrable in the case µ = 3 and apparently only for this

particular value of the mass ratio. In that special case, there is a second

conserved quantity given by

J =
pθ
4m

(

pr cos
θ

2
− 2pθ

r
sin

θ

2

)

+mgr2 sin
θ

2
cos2

θ

2
. (14.24)

From Hamilton’s equations, ṙ = pr/4m, ṗr = (p2
θ/mr

3) − mg(3 − cos θ),

θ̇ = pθ/mr
2, ṗθ = −mgr sin θ, one can show by brute force that J̇ = 0. We

note that while J is also quadratic in the momenta pr, pθ, it is independent

of the Hamiltonian H .

It is certainly not yet clear what ‘physical’ property is represented by

this ‘hidden symmetry’. When µ = 3 the motion is completely ordered.

For all other mass ratio values there are at least pockets of highly irregular

and chaotic motion.

The Hénon–Heiles system

From the previous examples it should be apparent that a paradigm of

chaotic dynamics is provided by a Hamiltonian system with two degrees

of freedom which has only one conserved quantity, e.g. the Hamiltonian

itself. Under these circumstances the system dynamics can show all the

features of sensitivity to initial conditions and loss of predictability indi-

cated in §13.7. As a final example consider the motion of a particle of unit

mass in a two-dimensional asymmetric potential well (see Fig. 14.15) so

that its Hamiltonian is

H =
1

2m
(p2
x + p2

y) + V (x, y), (14.25)

where

V = 1
2 (x2 + y2) + x2y − 1

3y
3

≡ 1
2r

2 + 1
3r

3 sin 3θ in plane polars.

This system, with the analogy of a small ball rolling under gravity in

an asymmetric bowl, was introduced by Hénon and Heiles (Astronomical

Journal, 69, 73–79, 1964) in order to model the motion of a star in a galaxy

which has a simple smoothed-out gravitational potential to represent the

attraction of the other stars.
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Fig. 14.15 Hénon–Heiles potential contours of V near the local minimum at (0, 0).

For small energies the cubic terms in V are insignificant when compared

with the quadratic terms and in that limit the motion is integrable, con-

sisting as it does of a combination of normal modes as obtained by the

methods of Chapter 11. Of course the motion for small energies is just

that of the isotropic oscillator of §4.1. For larger energies corresponding to

larger displacements away from the potential minimum at the origin the

motion becomes highly irregular.

There are very similar consequences for many other such systems, e.g.

the double pendulum system of §11.1, when we now allow θ, ϕ not to be

restricted to be small.

14.5 Slow Change of Parameters — Adiabatic Invariance

Let us suppose that in a cyclic system (librating or rotating) we allow some

of the control parameters to change on a very long time scale, i.e. on a

scale of many basic oscillation periods. Then it emerges that the change

in an action I is then also very slow, in the sense that we can change

the parameters by as large an amount as we may want, while I stays as

near constant as we want, provided that the change of parameters is made

slowly enough. The change of parameters is then said to be carried out

adiabatically and the action variables are then called adiabatic invariants .

Now a general proof of this property is beyond our scope here, so let us

consider by way of illustration the simple harmonic oscillator of §2.2, but
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now with a frequency which is slowly-varying. That is to say

ẍ+ [ω(t)]2x = 0, (14.26)

with ω =
√

k/m, where ω̇/ω � ω. The variation in ω could, for example,

be brought about by a spring constant k which varies on a time scale which

is very long compared with the natural period τ = 2π/ω. Over a single

period (during which ω does not change appreciably) we may write

x(t) = a cos[ω(t)t− θ], (14.27)

as in (2.20).

The energy of the oscillation is

E = 1
2m(ẋ2 + ω2x2) ≡ 1

2mω
2a2, (14.28)

essentially, and this now changes with time at the slow rate

Ė = m(ẋẍ+ ω2xẋ + ωω̇x2) = mωω̇x2. (14.29)

By averaging over a period of the oscillation, so that e.g. 〈E〉 = 1
τ

∫ τ

0
E dτ =

E (above) we obtain

d

dt
〈E〉 = mωω̇〈x2〉 = 1

2mωω̇a
2

≡ ω̇

ω
〈E〉.

(14.30)

We obtain immediately

d

dt

[ 〈E〉
ω

]

=
1

ω

d

dt
〈E〉 − ω̇

ω2
〈E〉 = 0, (14.31)

so that 〈E〉/ω is essentially constant. This is, of course, our measure of the

action I of this oscillator. (See (14.9).)

For more general systems the demonstration is carried out via the def-

inition (14.4) of the action variable. Particular physical applications are

very common and valuable conclusions can be drawn about the variations

of other variables on the assumption of the applicability of the principle of

adiabatic invariance.

Example: Pendulum with slowly varying length

Find how the amplitude of (small) oscillation of a simple pendulum

changes as the length is varied slowly.
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We can consider the simple pendulum of §2.1, but now with length

l(t) changing slowly with time, and we can simplify considerably by

confining ourselves to small oscillations. We then need only put x = lθ

in the above analysis of the simple harmonic oscillator, together with

ω =
√

g/l. In this case the action I is given by

I = E/ω = 1
2mωa

2

= 1
2m

√

gl3(θmax)
2,

(14.32)

since a = lθmax here.

The assumption that I is invariant leads to θmax ∝ l−3/4 (see Prob-

lem 13) and we can find from this how the energy, displacement, maxi-

mum acceleration of the pendulum bob change as l is changed, possibly

by orders of magnitude, on the assumption that the change in l is effected

sufficiently slowly.

A practical problem to contemplate when considering this matter is the

consumption of a piece of spaghetti, although this is not usually a simple

pendulum and politeness may well rule out the necessary long time scale

for consumption! However, the general principle is the same, particularly

with regard to the dangers of spaghetti sauce!

The elastic bouncer

In §14.3 we considered a perfectly elastic ball bouncing normally between

two walls and the action I for that case was found to be
√

2mH L/π where

m,H are, respectively, the mass and energy of the ball and L is the distance

between the walls. If the walls are now moved either towards or away from

one another very slowly (‘adiabatically’), then the principle of adiabatic

invariance tells us that L
√
H should be essentially constant, so that v ∝ 1/L

and energy H ∝ 1/L2 (see Problem 14). Again it should be noted that v,H

can change by orders of magnitude, while the action I remains essentially

constant. We can note here that we can model a monatomic gas with elastic

molecules bouncing in a cubical box and, under reasonable assumptions,

obtain the relationship that pressure ∝ (density)5/3 for adiabatic change.

Attractive central force problem with varying strength

Evidently the force of attraction, e.g. of the Sun, would diminish as its

mass decreases over what is, for us, a long time. It has also been suggested
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by Dirac that the gravitational ‘constant’ may, in fact, change on a long

time scale. In either case we can look to the action/angle formulation

in §14.3, where I2 is an exact invariant and I1 can be taken now as an

adiabatic invariant. As a consequence we can show, in particular, that, as

the strength |k| of the attracting force decreases, the period and the semi-

major axis of the Kepler elliptical orbit of a planet both increase (as we

might expect), but that (rather unexpectedly) the eccentricity of the orbit

remains constant and the orbit retains its shape. (See Problem 16.)

The adiabatic invariance of the action variables has enormous impor-

tance in the transition to quantum mechanics. The pendulum with slow

variation in length was a discussion problem for Lorentz and Einstein in

1911, when the foundations of quantum mechanics were being laid. The

effective constancy of the action variables by the principle of adiabatic in-

variance, in the classical formulation as control parameters are changed very

slowly, makes the action variables the prime candidates for quantization.

14.6 Near-integrable Systems

When we have a system which is Hamiltonian with H = H0(q,p) and

integrable, so that its dynamics are regular and ordered, we can ask what

happens for a system which is not itself integrable, but which is close by.

That is to say this latter system has Hamiltonian H = H0 + εH1 where ε

is very small.

When there is only one degree of freedom (n = 1) there is a well-

developed perturbation theory, which allows us to find out how the ac-

tion/angle variables for the H0 system are changed by the perturbation

εH1. We won’t detail this here, but it turns out that the only real diffi-

culty with the perturbation expansions (as power series in ε) is associated

with attempting to expand near where the basic frequency ω0 of the un-

perturbed system H0 is zero. An example of this is provided by the simple

pendulum and the libration/rotation orbits which are situated close to the

separatrices (at which ω0 = 0). The perturbation expansions break down in

this neighbourhood, although they generally work well elsewhere. A simple

remedy would seem to suggest itself strongly — avoid separatrices!

For systems with at least two degrees of freedom (n ≥ 2) the perturba-

tion analysis seems to be plagued by a similar difficulty, but much worse in

implication. The expansions for the n = 1 case contain denominators ω0,
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so that the expansions become non-uniformly valid near ω0
∼= 0. For the

n ≥ 2 case we find in the expansions denominators like ω0 · N where the

lattice vector N has integer components and ω0 is the vector of normal

frequencies of the particular torus (see §14.1) about which we are trying to

expand our series solution.

Now when this denominator is actually zero we have a degeneracy (or

resonance), in that some of the normal frequencies have rational ratios.

This is bad enough, but the trouble is that, even for ω0 not exactly reso-

nant in this manner, we can apparently make choices of N components in

order to make ω0 · N as close as we might (not) like to zero — thus de-

stroying the usefulness of our expansion. This is usually called the problem

of small denominators and it seems to imply that, only if the perturbation

εH1 to our Hamiltonian H0 is such that H = H0 + εH1 is still integrable

through the preservation of a sufficient number of conserved quantities, is

the phase space torus structure itself preserved, although distorted, and

with convergent perturbation expansions.

Very elaborate methods have been developed in an attempt to patch up

the expansions in the general case. Especially noteworthy is a tour de force

by Delaunay for the Sun–Earth–Moon system (‘lunar theory’) undertaken

in the middle of the nineteenth century, which involved about twenty years

of endeavour, but all such efforts seemed doomed to failure. It seemed that

the slightest perturbation, however small, would cause the torus structure

of an integrable system to collapse irretrievably. That this is not in fact

the case was demonstrated by Kolmogorov, Arnol’d and Moser (KAM) in

work originating between 1954 and 1963. This work has led to an explosion

of research, results and applications. KAM showed that, as long as the

perturbation introduced to a smooth system is itself smooth enough, then

the torus destruction with a perturbed system is progressive as the size of

the perturbation increases.

Key roles are played in the theory, and its consequences, by the

following:

• Rational approximation. This means the closeness by which real num-

bers can be approximated by rationals. This is important, because the

torus breakdown grows with the perturbation around the resonant (ω0

with rational ratios) tori.

• Fractals . These are ‘self-similar’ structures in maps, i.e. in Poincaré

sections (like e.g. Fig. 14.13) and in full phase space. Properties of maps

are explored briefly in Appendix D.
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• Divergence of trajectories. Breakdown of the torus structure gives free-

dom to system trajectories to diverge strongly from their neighbours,

leading to ‘extreme sensitivity to initial conditions’ (see §13.7) and to

chaotic behaviour.

• Lack of predictability. We have effectively stochastic output resulting

even from strictly deterministic systems, so that we lose knowledge of

the connection between cause and effect.

To the big question ‘Is the Solar System stable?’, which has motivated a lot

of work in Mechanics, the theory provides the answer ‘a (definite) maybe’.

The Solar System is an n-body problem, which is markedly hierarchical, so

that the effect of e.g. planet/planet interactions is of lower order than the

planet/Sun interactions which produce Kepler ellipses. For this reason the

broad structure of the system is robust (fortunately for the human race!).

For large configurations, stable and unstable regimes may well be closely

interwoven, so that in an idealized system we might not be able to tell from

(necessarily) imprecise observations quite what regime we are in! However

we should find the hierarchical nature of our system, with a strong central

Sun, to be reassuring apart from the possibility of asteroid impact — in

practice the fate of the whole Solar System is actually rather likely to be

determined largely by dissipative and other non-gravitational forces.

14.7 Summary

In this chapter the importance of the number of symmetries of a Hamil-

tonian system (leading to conservation laws) has been shown in the re-

strictions they impose on the freedom of the system trajectories in the

appropriate phase space.

Integrability of the system leads to a natural formulation in terms of

action/angle variables, which allow us to detail the nonlinear normal modes

of such a system, i.e. modes which are exact and involve no approximations

for small-amplitude motions.

Examples have been given of simple/important Hamiltonian systems

which have regimes which exhibit chaos and a resulting breakdown of pre-

dictability.

The action variables are effectively constant when system control pa-

rameters are changed very slowly. This principle of adiabatic invariance is

a general result, which has non-intuitive and useful consequences for the

way in which other quantities of physical interest may change, possibly by

orders of magnitude on these long time scales.



Order and Chaos in Hamiltonian Systems 375

The adiabatic invariance of action variables identifies them as prime

candidates to be quantized in the transition from classical to quantum

mechanics.

There are other routes to chaos. Indeed e.g. the limit cycles of Chapter

13, each with a single-point Poincaré section, can go through a period-

doubling cascade to chaos (see Appendix D) as parameters are changed.

When trajectories are stretched, squeezed and folded then chaos and ‘mix-

ing’ typically result.

It is fitting that this book should end with the mention of results (KAM)

which point the way to a whole host of future developments, by no means

the least of which is the question of how to quantize a system which is

classically chaotic!

As we said in the Preface, Classical Mechanics is a very old subject.

However it is very much alive!

Problems

1. A particle of mass m is projected outward radially from the surface

(q = R) of a spherical planet. Show that the Hamiltonian is given by

H = p2/2m − |k|/q (with k constant), so that H is a constant of the

motion (≡ energyE). Sketch the phase portrait in the (q, p) phase plane

for q ≥ R, distinguishing between trajectories which correspond to the

particle returning and not returning to the planet’s surface. When the

particle does return show that the time taken to do this is

t0 =
√

2m

∫ h

R

dq
√

E + |k|/q
, where h =

|k|
|E| .

Evaluate this integral to find t0 in terms of h,R, |k|/m. (Hint : the

substitution q = h sin2 θ is helpful!) By considering the limit R/h→ 0

show that the result is in accord with Kepler’s third law (4.32).

2. For an autonomous Hamiltonian system with two degrees of freedom

the Hamiltonian H is a constant of the motion and such a system is

integrable if another constant F (independent of H) can be found —

i.e. such that [F,H ] = 0.

(a) For the double harmonic oscillator (14.3) show that we may take

F = p2
1/2m+ 1

2mω
2
1q

2
1 as the second constant.

(b) For central force motion (14.14) show that we may take F = pθ as

the second constant.
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(c) *When the potential V (r) = −|k|/r, show that the components of

the vector

A =
p ∧ J

m|k| − r

r

with p,J respectively linear, angular momentum) are constants of the

motion.

(A is the Laplace–Runge–Lenz vector. It can be shown using the results

in §4.4 that it has magnitude given by the eccentricity e of the conic-

section orbit and is directed from the centre of force along the major

axis towards the position of closest approach (‘perihelion’).)

3. A string of length l with a mass m at each end passes through a hole

in a frictionless horizontal plane. One mass moves horizontally on the

plane and the other mass hangs vertically downwards. Show that a

suitable Hamiltonian for the system is

H =
p2
r

4m
+

p2
θ

2mr2
−mg(l − r),

where (r, θ) are the polar co-ordinates of the particle on the plane and

pr, pθ are the corresponding momenta. Identify two constants of the

motion. Show that a steady motion with r = r0 is possible (for any

r0 > 0), if pθ is chosen suitably, and that the period of small oscillations

about this motion is 2π
√

2r0/3g.

4. Consider again the particle sliding on the inside of a smooth cone, as

in Chapter 12, Problem 1. Show that when a stable circular motion is

disturbed the resulting small oscillations are only closed if
√

3 sinα is

a rational number.

5. For central force motion with an inverse square law force of attraction

the Hamiltonian is (14.14), i.e.

H =
p2
r

2m
+

p2
θ

2mr2
− |k|

r
(≡ energy E).

If we fix pθ, show that r is bounded (r1 ≤ r ≤ r2) only when

−k2m/2p2
θ ≤ E < 0 and that the energy minimum corresponds to

an orbit in physical space which is a circle. Sketch the curves H = con-

stant in the (r, pr) projection of the full four-dimensional phase space

for this system. Consider this projection in the light of the discussion

of surfaces of section in §14.2.

6. A particle of mass m is constrained to move under the action of gravity

in the vertical (x, z) plane on a smooth cycloid curve given paramet-
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rically by x = l(θ + sin θ), z = l(1 − cos θ). Show that a suitable

Hamiltonian is

H =
p2
θ

4ml2(1 + cos θ)
+mgl(1 − cos θ).

Use action/angle variables to show that the frequency of oscillation of

the particle is independent of its amplitude, i.e. it is the same for all

initial conditions with |θ| < π.

(The substitution s = sin 1
2θ is useful. This tautochrone property of

the cycloid was known to Huygens in the seventeenth century and, in

principle at least, it leads to some quite accurate clock mechanisms.

Contrast the tautochrone property with the brachistochrone property

of Chapter 3, Problem 15.)

7. *A particle of mass m is attached to the origin by a light elastic string

of natural length l, so that it is able to move freely along the x-axis

if its distance from the origin is less than l, but otherwise moves in a

potential V (x) = 1
2k(|x| − l)2 for |x| > l. If the particle always moves

in a straight line, sketch the potential and the phase-plane trajectories

for different values of the energy E. Show that E = (
√

IΩ + β2 − β)2,

where I is the action, β =
√

2k l/π, Ω =
√

k/m. Explain briefly

(without detailed calculation) how the angle variable φ conjugate to

the action may be found in the form φ(x) and how x may be found as a

function of the time t. What happens in the (separate) limits of small

and large energies E?

8. *A particle of mass m moves in a one-dimensional potential V (q) =
1
2 (kq2 + λ/q2), where k, λ, q > 0. Sketch the potential and the phase

portrait. Show that the energy E and action I are related by

E =
√
kλ+ 2I

√

k/m

and that the period is then independent of amplitude. Discuss how the

dependence of q on the angle variable φ may be found and then the

dependence of q on the time t.

(This one-dimensional problem models the purely radial part of the

motion of the isotropic harmonic oscillator of §4.1. The integral
∫ x2

x1

√

(x2 − x)(x− x1)
dx

x
= 1

2π(x1 + x2) − π
√
x1x2

where x2 > x1 > 0 and x = q2 will prove useful!)

9. *For central force motion with an inverse square law force of attraction

(see Problem 5) confirm the result of (14.16) that the radial action I1 =
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−I2 + 1
2 |k|

√

2m/(−E), where I2 = pθ, so that the natural frequencies

of radial and transverse motions of the system are the same.

(In order to evaluate the integral in (14.15) the result given at the end

of Problem 8 will prove similarly useful!)

10. For the billiard in an elliptical enclosure (Fig. 14.12) use the result of

Appendix B, Problem 2 to show that the product Λ of the angular mo-

menta of the ball measured about the two foci of the ellipse is preserved

through each bounce, so that it is conserved and therefore a constant

of the motion.

Using elliptical co-ordinates (see Chapter 3, Problem 24), show

that Λ = (cosh2 λ − cos2 θ)−1(sinh2 λ p2
θ − sin2 θ p2

λ) and that H =

[2mc2(cosh2 λ− cos2 θ)]−1(p2
λ + p2

θ). Hence show that the reflected tra-

jectory from the boundary x2/a2 + y2/b2 = 1 is necessarily tangent

(when Λ > 0) to the ellipse λ = arcsinh
√

Λ/2mc2H .

[Closure for such a trajectory implies closure for all trajectories tangent

to the same inner ellipse — an example of a general result due to

Poncelet (1822).]

11. *Consider the motion of the swinging Atwood’s machine (see Fig. 14.14)

for various different values of the mass ratio µ = M/m.

(a) Show that when µ > 1 the motion of m is always bounded by a

zero-velocity curve which is an ellipse, whose shape depends on µ

and on the constant energy E.

(b) Show that when µ ≤ 1 the motion is not in general bounded for

any E by sketching the zero-velocity curves for mass m in the r, θ

plane (in various cases).

(Hint : The results of §B.2 will prove helpful in identifying the zero-

velocity curves.)

12. *Show that the equations of motion (14.19) for the restricted three-

body problem may be put into Hamiltonian form using the substitution

px = ẋ−ωy, py = ẏ+ωx. Show that, since the system is autonomous,
1
2 (ẋ2 + ẏ2) + V = C, where C is a constant of the motion (Jacobi).

Hence sketch the regions V ≤ C of possible motions in the x, y plane,

for various values of C and of the mass ratio M1/M2, considering par-

ticularly those values of C corresponding to the three ‘equilibria’ on

the x axis and to the two Lagrangian equilateral triangle ‘equilibria’ —

see Chapter 10, Problem 16. (Note that for the Earth/Moon system

with M1/M2 = 81.3 there is in consequence a value of C below which

an Earth–Moon transfer is not possible.)
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13. For the small oscillations of a pendulum whose length l is varying very

slowly show that the maximum angular displacement θmax ∝ l−3/4.

Hence show that the maximum sideways displacement from the vertical

is ∝ l1/4 and that the maximum acceleration is ∝ l−3/4. (Note that this

last result implies, as l decreases slowly, an increasing risk for spaghetti

eaters from sauce detachment!)

14. For the elastic bouncer (see Fig. 14.7) between two walls whose sepa-

ration is being changed slowly (‘adiabatically’) show that the bouncer

speed v ∝ 1/L. We can model (crudely) a monatomic gas, confined

within a cubical box of side L, by assuming that each molecule has the

same speed v and that one third of the molecules move normally to each

pair of faces of the box! If intermolecular collisions do not affect these

assumptions then L can be changed very slowly. Assuming that the ki-

netic energy of the molecules gives a measure of temperature and that

the gas is ‘ideal’, so satisfying the ideal gas law: (pressure)×(volume)

∝ (temperature), obtain the relationship (pressure) ∝ (volume)5/3 for

adiabatic change of a monatomic gas.

15. A particle of mass m moves smoothly up and down a smooth inclined

plane (inclined at an angle α to the horizontal). The particle Hamilto-

nian is H = p2/2m+mgq sinα (= E) where p = mq̇, the co-ordinate

q ≥ 0, being measured upwards along the plane from a fixed point

q = 0 at which the particle is perfectly elastically reflected at each

impact. Show that the energy E and action I for this oscillator are

related by E = [(9π2/8)g2m sin2 α]1/3I2/3 and find the frequency ω of

small oscillation in terms of g, α and q0 (the amplitude of the motion).

Given that the angle α now decreases very slowly use the principle

of adiabatic invariance to show that during the long time in which α

decreases from π/3 to π/6 the energy of the system decreases by about

31% and the amplitude and period increase by about 20% and 44%

respectively.

16. *For central force motions with an inverse square law force of attrac-

tion the relation between energy E and actions I1, I2 is (14.17), demon-

strated in Problem 9. If the strength of the force (i.e. |k|) decreases

slowly (‘tired sun’), use the principle of adiabatic invariance to show

that the period τ of a bounded orbit (an ellipse, see Problem 5) varies

so that τ ∝ k−2 (i.e. τ increases). Find how the semi-major axis of

the ellipse varies with k and show that the eccentricity of the ellipse

remains constant.
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Appendix A

Vectors

In this appendix, we give a summary of the properties of vectors which are

used in the text.

A.1 Definitions and Elementary Properties

A vector a is an entity specified by a magnitude, written a or |a|, and a

direction in space. It is to be contrasted with a scalar, which is specified

by a magnitude alone. The vector a may be represented geometrically by

an arrow of length a drawn from any point in the appropriate direction. In

particular, the position of a point P with respect to a given origin O may

be specified by the position vector r drawn from O to P as in Fig. A.1.

x y

z

O

k

r

j

i

Fig. A.1
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Any vector can be specified, with respect to a given set of Cartesian

axes, by three components. If x, y, z are the Cartesian co-ordinates of P ,

with O as origin, then we write r = (x, y, z), and say that x, y, z are the

components of r. (See Fig. A.1.) We often speak of P as ‘the point r’.

When P coincides with O, its position vector is the zero vector 0 = (0, 0, 0)

of length 0 and indeterminate direction. For a general vector, we write

a = (ax, ay, az), where ax, ay, az are its components.

The product of a vector a and a scalar c is ca = (cax, cay, caz). If c > 0,

it is a vector in the same direction as a, and of length ca; if c < 0, it is

in the opposite direction, and of length |c|a. In particular, if c = 1/a, we

obtain the unit vector in the direction of a, â = a/a.

Addition of two vectors a and b may be defined geometrically by draw-

ing one vector from the head of the other, as in Fig. A.2. (This is the ‘par-

allelogram law’ for addition of forces — or vectors in general.) Subtraction

b

a

a + b

a

b
θ

Fig. A.2

is defined similarly by Fig. A.3. In terms of components,

a

b

a − b

Fig. A.3

a + b = (ax + bx, ay + by, az + bz),

a − b = (ax − bx, ay − by, az − bz).
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It is often useful to introduce three unit vectors i, j,k, pointing in the

directions of the x-, y-, z-axes, respectively. They form what is known as

an orthonormal triad — a set of three mutually perpendicular vectors of

unit length. It is clear from Fig. A.1 that any vector r can be written as a

sum of three vectors along the three axes,

r = xi + yj + zk. (A.1)

Mathematically, any set of three quantities may be grouped together and

regarded as the components of a vector. It is important to realize, however,

that when we say that some physical quantity is a vector we mean more

than just that it needs three numbers to specify it. What we mean is that

these three numbers must transform in the correct way under a change of

axes.

For example, consider a new set of axes i′, j′,k′ related to i, j,k by a

rotation through an angle ϕ about the z-axis (see fig. A.4):

x

x′
y

y′

ϕ

ϕ

i

r
i′

j
j′

Fig. A.4

i′ = i cosϕ+ j sinϕ,

j′ = −i sinϕ+ j cosϕ, (A.2)

k′ = k.

The co-ordinates x′, y′, z′ of P with respect to the new axes are defined by

r = x′i′ + y′j ′ + z′k′.

Substituting (A.2) and comparing with (A.1), we see that x = x′ cosϕ −
y′ sinϕ, etc, or equivalently x′ = x cosϕ + y sinϕ, etc. Physically, then, a

vector a is an object represented with respect to any set of axes by three
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components (ax, ay, az) which transform under rotations in the same way

as (x, y, z), i.e., in matrix notation,

⎡

⎣

a′x
a′y
a′z

⎤

⎦ =

⎡

⎣

cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1

⎤

⎦

⎡

⎣

ax
ay
az

⎤

⎦ . (A.3)

A.2 The Scalar Product

If θ is the angle between the vectors a and b, then by elementary trigonom-

etry the length of their sum is given by

|a + b|2 = a2 + b2 + 2ab cos θ. (A.4)

It is useful to define their scalar product a · b (‘a dot b’) as

a · b = ab cos θ. (A.5)

Note that this is equal to the length of a multiplied by the projection of b

on a, or vice versa. (See Fig. A.5.)

a

b

a ⋅ b

θ

Fig. A.5

In particular, the square of a is

a2 = a · a = a2.

Thus we can write (A.4) as

(a + b)2 = a2 + b2 + 2a · b,

and, similarly, the square of the difference is

(a − b)2 = a2 + b2 − 2a · b.
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All the ordinary rules of algebra are valid for the sums and scalar prod-

ucts of vectors, save one. (For example, the commutative law of addition,

a + b = b + a is obvious from Fig. A.2, and the other laws can be de-

duced from appropriate figures.) The one exception is the following: for

two scalars, ab = 0 implies that either a = 0 or b = 0 (or, of course, both),

but we can find two non-zero vectors a and b for which a · b = 0. In fact,

this is the case if θ = π/2, that is, if the vectors are orthogonal:

a · b = 0 if a ⊥ b.

The scalar products of the unit vectors i, j,k are

i2 = j2 = k2 = 1, i · j = j · k = k · i = 0.

Thus, taking the scalar product of each in turn with (A.1), we find

i · r = x, j · r = y, k · r = z.

These relations express the fact that the components of r are equal to its

projections on the three co-ordinate axes.

More generally, if we take the scalar product of two vectors a and b, we

find

a · b = axbx + ayby + azbz, (A.6)

and in particular,

r2 = r2 = x2 + y2 + z2. (A.7)

A.3 The Vector Product

Any two non-parallel vectors a and b drawn from O define a unique axis

through O perpendicular to the plane containing a and b. It is useful to

define the vector product a∧b (‘a cross b’, sometimes also written a×b) to

be a vector along this axis whose magnitude is the area of the parallelogram

with edges a and b,

|a ∧ b| = ab sin θ. (A.8)

(See Fig. A.6.) To distinguish between the two opposite directions along

the axis, we introduce a convention: the direction of a ∧ b is that in which

a right-hand screw would move when turned from a to b.
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θ A

b

a

a∧b

Fig. A.6

A vector whose sense is merely conventional, and would be reversed by

changing from a right-hand to a left-hand convention, is called an axial

vector, as opposed to an ordinary, or polar, vector. For example, velocity

and force are polar vectors, but angular velocity is an axial vector (see

§5.1). The vector product of two polar vectors is thus an axial vector.

The vector product has one very important, but unfamiliar, property.

If we interchange a and b, we reverse the sign of the vector product:

b ∧ a = −a ∧ b. (A.9)

It is essential to remember this fact when manipulating any expression

involving vector products. In particular, the vector product of a vector

with itself is the zero vector,

a ∧ a = 0.

More generally, a ∧ b vanishes if θ = 0 or π:

a ∧ b = 0 if a ‖ b.

If we choose our co-ordinate axes to be right-handed, then the vector

products of i, j,k are

i ∧ i = j ∧ j = k ∧ k = 0,

i ∧ j = k, j ∧ i = −k,

j ∧ k = i, k ∧ j = −i, (A.10)

k ∧ i = j, i ∧ k = −j.
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Thus, when we form the vector product of two arbitrary vectors a and b,

we obtain

a ∧ b = i(aybz − azby) + j(azbx − axbz) + k(axby − aybx).

This relation may conveniently be expressed in the form of a determinant

a ∧ b =

∣

∣

∣

∣

∣

∣

i j k

ax ay az
bx by bz

∣

∣

∣

∣

∣

∣

. (A.11)

From any three vectors a, b, c, we can form the scalar triple product

(a ∧ b) · c. Geometrically, it represents the volume V of the parallelepiped

with adjacent edges a, b, c (see Fig. A.7). For, if ϕ is the angle between c

� � � � � �
� � � � � �
� � � � � �

A

b
c

a

a∧b

h

ϕ

Fig. A.7

and a ∧ b, then

(a ∧ b) · c = |a ∧ b|c cosϕ = Ah = V,

where A is the area of the base, and h = c cosϕ is the height. The volume

is reckoned positive if a, b, c form a right-handed triad, and negative if they

form a left-handed triad. For example, (i ∧ j) · k = 1, but (i ∧ k) · j = −1.

In terms of components, we can evaluate the scalar triple product by

taking the scalar product of c with (A.11). We find

(a ∧ b) · c =

∣

∣

∣

∣

∣

∣

ax ay az
bx by bz
cx cy cz

∣

∣

∣

∣

∣

∣

. (A.12)

Either from this formula, or from its geometric interpretation, we see

that the scalar triple product is unchanged by any cyclic permutation of
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a, b, c, but changes sign if any pair is interchanged:

(a ∧ b) · c = (b ∧ c) · a = (c ∧ a) · b
= −(b ∧ a) · c = −(c ∧ b) · a = −(a ∧ c) · b. (A.13)

Moreover, we may interchange the dot and the cross:

(a ∧ b) · c = a · (b ∧ c). (A.14)

(For this reason, a more symmetrical notation, [a, b, c], is sometimes used.)

Note that the scalar triple product vanishes if any two vectors are equal,

or parallel. More generally, it vanishes if a, b, c are coplanar.

From three vectors we can also form the vector triple product (a∧b)∧c.

Since this vector is perpendicular to a∧b, it must lie in the plane of a and

b, and must therefore be a linear combination of these two vectors. It is

not hard to show by writing out the components, that

(a ∧ b) ∧ c = (a · c)b − (b · c)a. (A.15)

Similarly,

a ∧ (b ∧ c) = (a · c)b − (a · b)c. (A.16)

Note that these vectors are unequal, so that we cannot omit the brackets in

a vector triple product. It is useful to note that in both of these formulae

the term with the positive sign is the middle vector times the scalar product

of the other two.

A.4 Differentiation and Integration of Vectors

We are often concerned with vectors which are functions of some scalar

parameter, for example the position vector of a particle as a function of

time, r(t). The vector distance travelled by the particle in a short time

interval ∆t is

∆r = r(t+ ∆t) − r(t).

(See Fig. A.8.) The velocity, or derivative of r with respect to t, is defined

just as for scalars, as the limit of a ratio,

ṙ =
dr

dt
= lim

∆t→0

∆r

∆t
. (A.17)
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r(t)

r(t+∆t)
∆r

v

Fig. A.8

In the limit, the direction of this vector is that of the tangent to the path

of the particle, and its magnitude is the speed in the usual sense. In terms

of co-ordinates,

ṙ = (ẋ, ẏ, ż).

Derivatives of other vectors are defined similarly. In particular, we can

differentiate again to form the acceleration vector r̈ = d2r/dt2.

It is easy to show that all the usual rules for differentiating sums and

products apply also to vectors. For example,

d

dt
(a ∧ b) =

da

dt
∧ b + a ∧ db

dt
,

though in this particular case one must be careful to preserve the order of

the two factors, because of the antisymmetry of the vector product.

Note that the derivative of the magnitude of r, dr/dt, is not the same

thing as the magnitude of the derivative, |dr/dt|. For example, if the

particle is moving in a circle, r is constant, so that ṙ = 0, but clearly |ṙ| is

not zero. In fact, applying the rule for differentiating a scalar product to

r2, we obtain

2rṙ =
d

dt
(r2) =

d

dt
(r2) = 2r · ṙ,

which may also be written

ṙ = r̂ · ṙ. (A.18)

Thus the rate of change of the distance r from the origin is equal to the

radial component of the velocity vector.
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We can also define the integral of a vector. If v = dr/dt, then we also

write

r =

∫

v dt,

and say that r is the integral of v. If we are given v(t) as a function of

time, and the initial value of r, r(t0), then the position at any later time

is given by the definite integral

r(t1) = r(t0) +

∫ t1

t0

v(t) dt. (A.19)

This is equivalent to three scalar equations for the components, for example,

x(t1) = x(t0) +

∫ t1

t0

vx(t) dt.

One can show, exactly as for scalars, that the integral in (A.19) may be

expressed as the limit of a sum.

A.5 Gradient, Divergence and Curl

There are many quantities in physics which are functions of position in

space; for example, temperature, gravitational potential, or electric field.

Such quantities are known as fields. A scalar field is a scalar function

φ(x, y, z) of position in space; a vector field is a vector function A(x, y, z).

We can also indicate the position in space by the position vector r and

write φ(r) or A(r).

Now let us consider the three partial derivatives of a scalar field,

∂φ/∂x, ∂φ/∂y, ∂φ/∂z. They form the components of a vector field, known

as the gradient of φ, and written gradφ, or ∇φ (‘del φ’, or occasionally

‘nabla φ’). To show that they really are the components of a vector, we

have to show that it is defined in a manner which is independent of the

choice of axes. We note that if r and r + dr are two neighbouring points,

then the difference between the values of φ at these points is

dφ = φ(r + dr) − φ(r) =
∂φ

∂x
dx+

∂φ

∂y
dy +

∂φ

∂z
dz = dr · ∇φ. (A.20)

Now, if the distance |dr| is fixed, then this scalar product takes on its

maximum value when dr is in the direction of ∇φ. Hence we conclude

that the direction of ∇φ is the direction in which φ increases most rapidly.
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Moreover, its magnitude is the rate of increase of φ with distance in this

direction. (This is the reason for the name ‘gradient’.) Clearly, therefore,

we could define ∇φ by these properties, which are independent of any

choice of axes.

We are often interested in the value of the scalar field φ evaluated at

the position of a moving particle, φ(r(t)). From (A.20) it follows that the

rate of change of φ is

dφ(r(t))

dt
= ṙ · ∇φ. (A.21)

The symbol ∇ may be regarded as a vector which is also a differential

operator (like d/dx), given by

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
.

We can also apply it to a vector field A. The divergence of A is defined to

be the scalar field

divA = ∇ · A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

, (A.22)

and the curl of A to be the vector field

curlA = ∇ ∧ A =

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂

∂x

∂

∂y

∂

∂z

Ax Ay Az

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (A.23)

This latter expression is an abbreviation for the expanded form

∇ ∧ A = i

(

∂Az
∂y

− ∂Ay
∂z

)

+ j

(

∂Ax
∂z

− ∂Az
∂x

)

+ k

(

∂Ay
∂x

− ∂Ax
∂y

)

.

(Instead of curl A, the alternative notation rotA is sometimes used, par-

ticularly in non-English-speaking countries.)

To understand the physical significance of these operations, it is helpful

to think of the velocity field in a fluid: v(r) is the fluid velocity at the point

r.

Let us consider a small volume of fluid, δV = δx δy δz, and try to find its

rate of change as it moves with the fluid. Consider first the length δx. To a

first approximation, over a short time interval dt, the velocity components

in the y and z directions are irrelevant; the length δx changes because

the x components of velocity, vx, at its two ends are slightly different, by
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an amount (∂vx/∂x) δx. Thus in a time dt, the change in δx is d δx =

(∂vx/∂x) δxdt, whence

d δx

dt
=
∂vx
∂x

δx.

Taking account of similar changes in δy and δz, we have

d

dt
(δx δy δz) =

(

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)

δx δy δz,

or, equivalently,

d δV

dt
= (∇ · v) δV. (A.24)

Thus ∇ · v represents the proportional rate of increase of volume: positive

∇ · v means expansion, negative ∇ · v compression. In particular, if the

fluid is incompressible, then ∇ · v = 0.

It is possible to show in a similar way that a non-zero ∇∧v means that

locally the fluid is rotating. This vector, called the vorticity, represents the

local angular velocity of rotation (times 2; see Problem 10).

The rule for differentiating products can also be applied to expressions

involving ∇. For example, ∇ · (A ∧ B) is a sum of two terms, in one of

which ∇ acts on A only and in the other on B only. The gradient of a

product of scalar fields can be written

∇(φψ) = ψ∇φ+ φ∇ψ,

and similarly

∇ · (φA) = A · ∇φ+ φ∇ · A.

But, when vector products are involved, we have to remember that the

order of the factors as a product of vectors cannot be changed without

affecting the signs. Thus we have

∇ · (A ∧ B) = B · (∇ ∧ A) − A · (∇ ∧ B),

and, similarly,

∇ ∧ (φA) = φ(∇ ∧ A) − A ∧ (∇φ).
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We may apply the vector differential operator ∇ twice. The divergence

of the gradient of a scalar field φ is called the Laplacian of φ,

∇2φ = ∇ · ∇φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
. (A.25)

Some operations always give zero. Just as a ∧ a = 0, we find that the

curl of a gradient vanishes,

∇ ∧ ∇φ = 0. (A.26)

For example, its z component is

∂

∂x

(

∂φ

∂y

)

− ∂

∂y

(

∂φ

∂x

)

= 0.

Similarly, one can show that the divergence of a curl vanishes:

∇ · (∇ ∧ A) = 0. (A.27)

An important identity, analogous to the expansion of the vector triple

product (A.16), gives the curl of a curl,

∇ ∧ (∇ ∧ A) = ∇(∇ · A) − ∇2A, (A.28)

where of course

∇2A =
∂2A

∂x2
+
∂2A

∂y2
+
∂2A

∂z2
.

It may easily be proved by inserting the expressions in terms of components.

A.6 Integral Theorems

There are three important theorems for vectors which are generalizations

of the fundamental theorem of the calculus,

∫ x1

x0

df

dx
dx = f(x1) − f(x0).

First, consider a curve C in space, running from r0 to r1 (see Fig. A.9).

Let the directed element of length along C be dr. If φ is a scalar field,

then according to (A.20), the change in φ along this element of length is
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r

r
dr

0

1

r

r + dr

Fig. A.9

dφ = dr · ∇φ. Thus, integrating from r0 to r1, we obtain the first of the

integral theorems,
∫ r1

r0

dr · ∇φ = φ(r1) − φ(r0). (A.29)

The integral on the left is called the line integral of ∇φ along C. (Note

that, as here, it is often more convenient to place the differential symbol

dr to the left of the integrand.)

This theorem may be used to relate the potential energy function V (r)

for a conservative force to the work done in going from some fixed point

r0, where V is chosen to vanish, to r. Thus, if F = −∇V , then

V (r) = −
∫ r

r0

dr · F . (A.30)

When F is conservative, this integral depends only on its end-points, and

not on the path C chosen between them. Conversely, if this condition is

satisfied, we can define V by (A.30), and the force must be conservative.

The condition that two line integrals of the form (A.30) should be equal

whenever their end-points coincide may be restated by saying the the line

integral round any closed path should vanish. Physically, this means that

no work is done in taking a particle round a loop which returns to its

starting point. The integral round a closed loop is usually denoted by the

symbol
∮

C . Thus we require

∮

C

dr · F = 0, (A.31)

for all closed loops C.

This condition may be simplified by using the second of the integral

theorems — Stokes’ theorem. Consider a curved surface S, bounded by the

closed curve C. If one side of S is chosen to be the ‘positive’ side, then the
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positive direction round C may be defined by the right-hand-screw conven-

tion (see Fig. A.10). Take a small element of the surface, of area dS, and let

� � �
� � �

dS

S

C

n

Fig. A.10

n be a unit vector normal to the element, and directed towards its positive

side. Then the directed element of area is defined to be dS = ndS. Stokes’

theorem states that if A is any vector field, then
∫∫

S

dS · (∇ ∧ A) =

∮

C

dr · A. (A.32)

The application of this theorem to (A.31) is immediate. If the line integral

round C is required to vanish for all closed curves C, then the surface inte-

gral must vanish for all surfaces S. But this is only possible if the integrand

vanishes identically. So the condition for a force to be conservative is

∇ ∧ F = 0. (A.33)

We shall not prove Stokes’ theorem. However, it is easy to verify for a

small rectangular surface. (The proof proceeds by splitting up the surface

into small sub-regions.) Suppose S is a rectangle in the xy-plane, of area

dxdy. Then dS = k dxdy, so the surface integral is

k · (∇ ∧ A) dxdy =

(

∂Ay
∂x

− ∂Ax
∂y

)

dxdy. (A.34)

The line integral consists of four terms, one from each edge. The two terms

arising from the edges parallel to the x-axis involve the x component of A

evaluated for different values of y. They therefore contribute

Ax(y) dx−Ax(y + dy) dx = −∂Ax
∂y

dxdy.
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Similarly, the other pair of edges yields the first term of (A.34).

One can also find a necessary and sufficient condition for a field B(r)

to have the form of a curl,

B = ∇ ∧ A.

By (A.27), such a field must satisfy

∇ · B = 0. (A.35)

The proof that this is also a sufficient condition (which we shall not give

in detail) follows much the same lines as before. One can show that it

is sufficient that the surface integral of B over any closed surface should

vanish:

∫∫

S

dS · B = 0, (S closed)

and then use the third of the integral theorems, Gauss’ theorem. This states

that if V is a volume in space bounded by the closed surface S, then for

any vector field B,

∫∫∫

V

dV ∇ · B =

∫∫

S

dS · B, (A.36)

where dV denotes the volume element dV = dxdy dz, and the positive side

of S is taken to be the outside.

It is again easy to verify Gauss’ theorem for a small rectangular volume,

dV = dxdy dz. The volume integral is

(

∂Bx
∂x

+
∂By
∂y

+
∂Bz
∂z

)

dxdy dz. (A.37)

The surface integral consists of six terms, one for each face. Consider the

faces parallel to the xy-plane, with directed surface elements k dxdy and

−k dxdy. Their contributions involve k · B = Bz, evaluated for different

values of z. Thus they contribute

Bz(z + dz) dxdy −Bz(z) dxdy =
∂Bz
∂z

dxdy dz.

Similarly, the other terms of (A.37) come from the other pairs of faces.
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A.7 Electromagnetic Potentials

An important application of these theorems is to the electromagnetic field.

The basic equations of electromagnetic theory are Maxwell’s equations.

In the absence of dielectric or magnetic media, they may be expressed in

terms of two fields, the electric field E and the magnetic field B. There is

one pair of homogeneous equations,

∇ ∧ E +
∂B

∂t
= 0, ∇ · B = 0, (A.38)

and a second pair involving also the electric charge density ρ and current

density j,

µ−1
0 ∇ ∧ B − ε0

∂E

∂t
= j, ε0∇ · E = ρ, (A.39)

in which µ0 and ε0 are universal constants.

The second equation in (A.38) is just the condition (A.35). It follows

that there must exist a vector potential A such that

B = ∇ ∧ A. (A.40)

Then, substituting in the first of the equations (A.38), we find that ∇ ∧
(E +∂A/∂t) = 0. It follows that there must exist a scalar potential φ such

that

E = −∇φ− ∂A

∂t
. (A.41)

These potentials are not unique. If Λ is any scalar field, then the po-

tentials

φ′ = φ+
∂Λ

∂t
, A′ = A − ∇Λ (A.42)

define the same fields E and B as do φ and A. This is called a gauge

transformation. We may eliminate this arbitrariness by imposing an extra

condition, for example the radiation gauge (or Coulomb gauge) condition

∇ · A = 0. (A.43)

In the static case, where all the fields are time-independent, Maxwell’s

equations separate into a pair of electrostatic equations, and a magneto-

static pair. Then φ becomes the ordinary electrostatic potential, satisfying
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Poisson’s equation (6.48). The vector potential, by (A.39) and (A.40) sat-

isfies

∇ ∧ (∇ ∧ A) = µ0j.

Using (A.28), and imposing the radiation gauge condition (A.43), we find

∇2A = −µ0j. (A.44)

This is the analogue of Poisson’s equation. The solution is of the same form

as (6.15), namely

A(r) =
µ0

4π

∫∫∫

j(r′)

|r − r′| d3r′. (A.45)

Thus, given any static distribution of charges and currents, we may calcu-

late the potentials φ and A, and hence the fields E and B.

A.8 Curvilinear Co-ordinates

Another use of the integral theorems is to provide expressions for the gra-

dient, divergence and curl in terms of curvilinear co-ordinates.

Consider a set of orthogonal curvilinear co-ordinates (see §3.5) q1, q2, q3.

Let us denote the elements of length along the three co-ordinate curves by

h1 dq1, h2 dq2, h3 dq3. For example, in cylindrical polars

hρ = 1, hϕ = ρ, hz = 1, (A.46)

while in spherical polars

hr = 1, hθ = r, hϕ = r sin θ. (A.47)

Now consider a scalar field ψ, and two neighbouring points (q1, q2, q3) and

(q1+dq1, q2, q3). Then the difference between the values of ψ at these points

is

∂ψ

∂q1
dq1 = dψ = dr · ∇ψ = h1 dq1 (∇ψ)1,

where (∇ψ)1 is the component of ∇ψ in the direction of increasing q1.

Hence we find

(∇ψ)1 =
1

h1

∂ψ

∂q1
, (A.48)
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with similar expressions for the other components. Thus in cylindrical and

spherical polars, we have

∇ψ =

(

∂ψ

∂ρ
,
1

ρ

∂ψ

∂ϕ
,
∂ψ

∂z

)

, (A.49)

and

∇ψ =

(

∂ψ

∂r
,
1

r

∂ψ

∂θ
,

1

r sin θ

∂ψ

∂ϕ

)

. (A.50)

To find an expression for the divergence, we use Gauss’ theorem, applied

to a small volume bounded by the co-ordinate surfaces. The volume integral

is

(∇ · A)h1 dq1 h2 dq2 h3 dq3.

In the surface integral, the terms arising from the faces which are surfaces

of constant q3 are of the form A3h1 dq1 h2 dq2, evaluated for two different

values of q3. They therefore contribute

∂

∂q3
(h1h2A3) dq1 dq2 dq3.

Adding the terms from all three pairs of faces, and comparing with the

volume integral, we obtain

∇ · A =
1

h1h2h3

(

∂(h2h3A1)

∂q1
+
∂(h3h1A2)

∂q2
+
∂(h1h2A3)

∂q3

)

. (A.51)

In particular, in cylindrical and spherical polars,

∇ · A =
1

ρ

∂(ρAρ)

∂ρ
+

1

ρ

∂Aϕ
∂ϕ

+
∂Az
∂z

, (A.52)

and

∇ · A =
1

r2
∂(r2Ar)

∂r
+

1

r sin θ

∂(sin θ Aθ)

∂θ
+

1

r sin θ

∂Aϕ
∂ϕ

. (A.53)

To find the curl, we use Stokes’ theorem in a similar way. Let us consider

a small element of a surface q3 = constant, bounded by curves of constant

q1 and of q2. Then the surface integral is

(∇ ∧ A)3 h1 dq1 h2 dq2.
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In the line integral around the boundary, the two edges of constant q2
involve A1h1 dq1 evaluated for different values of q2, and so contribute

− ∂

∂q2
(h1A1) dq1 dq2.

Hence, adding the contribution from the other pair of edges, we obtain

(∇ ∧ A)3 =
1

h1h2

(

∂(h2A2)

∂q1
− ∂(h1A1)

∂q2

)

, (A.54)

with similar expressions for the other components. Thus, in particular, in

cylindrical and spherical polars

∇ ∧ A =

(

1

ρ

∂Az
∂ϕ

− ∂Aϕ
∂z

,
∂Aρ
∂z

− ∂Az
∂ρ

,
1

ρ

[

∂(ρAϕ)

∂ρ
− ∂Aρ

∂ϕ

])

, (A.55)

and

∇ ∧ A =

(

1

r sin θ

[

∂(sin θ Aϕ)

∂θ
− ∂Aθ

∂ϕ

]

,

1

r sin θ

∂Ar
∂ϕ

− 1

r

∂(rAϕ)

∂r
,

1

r

[

∂(rAθ)

∂r
− ∂Ar

∂θ

])

.

(A.56)

Finally, combining the expressions for the divergence and gradient, we

can find the Laplacian of a scalar field. It is

∇2ψ =
1

h1h2h3

[

∂

∂q1

(

h2h3

h1

∂ψ

∂q1

)

+
∂

∂q2

(

h3h1

h2

∂ψ

∂q2

)

+
∂

∂q3

(

h1h2

h3

∂ψ

∂q3

)]

.

(A.57)

In cylindrical polars,

∇2ψ =
1

ρ

∂

∂ρ

(

ρ
∂ψ

∂ρ

)

+
1

ρ2

∂2ψ

∂ϕ2
+
∂2ψ

∂z2
, (A.58)

and, in spherical polars,

∇2ψ =
1

r2
∂

∂r

(

r2
∂ψ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+
1

r2 sin2 θ

∂2ψ

∂ϕ2
. (A.59)
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A.9 Tensors

Scalars and vectors are the first two members of a family of objects known

collectively as tensors, and described by 1, 3, 9, 27, . . . components. Scalars

and vectors are called tensors of valence 0 and valence 1, respectively.

(Sometimes the word rank is used instead of ‘valence’, but there is then

a possibility of confusion with a different usage of the same word in matrix

theory.)

In this section, we shall be concerned with the next member of the

family, the tensors of valence 2, often called dyadics. We shall use the word

‘tensor’ in this restricted sense, to mean a tensor of valence 2.

Tensors occur most frequently when one vector b is given as a linear

function of another vector a, according to the matrix equation

⎡

⎣

bx
by
bz

⎤

⎦ =

⎡

⎣

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

⎤

⎦

⎡

⎣

ax
ay
az

⎤

⎦ . (A.60)

An example is the relation (9.17) between the angular momentum J and

angular velocity ω of a rigid body.

The nine elements of the 3 × 3 matrix in (A.60) are the components of

a tensor, which we shall denote by the sans-serif capital T. By an obvious

extension of the dot product notation for the scalar product of two vectors,

we may write (A.60) as

b = T · a. (A.61)

For example, (9.17) may be written J = I ·ω, where I is the inertia tensor.

We can go on to form the scalar product of (A.61) with another vector,

c, obtaining a scalar, c ·T · a. Note that in general this is not the same as

a · T · c. In fact,

a · T · c = c · T̃ · a, (A.62)

where T̃ is the transposed tensor of T, obtained by reflecting in the leading

diagonal, e.g., T̃xy = Tyx.

The tensor T is called symmetric if T̃ = T, i.e., if Tji = Tij for all i, j.

It is antisymmetric if T̃ = −T, or Tji = −Tij for all i, j.

An interesting example of an antisymmetric tensor is provided by the

relation (5.2) giving the velocity v as a function of position r in a body

rotating with angular velocity ω. It is a linear relation and so may be
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written in the form (A.60), specifically as

⎡

⎣

vx
vy
vz

⎤

⎦ =

⎡

⎣

0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

⎤

⎦

⎡

⎣

x

y

z

⎤

⎦ .

There is an important special tensor,

1 =

⎡

⎣

1 0 0

0 1 0

0 0 1

⎤

⎦,

called the unit tensor or identity tensor, with the property that 1 · a = a

for all vectors a.

From any two vectors a and b, we can form a tensor T by multiplying

their elements together (without adding), i.e., Tij = aibj. This is the tensor

product (or dyadic product or outer product) of a and b, written T = ab,

with no dot or cross. Note that T ·c = (ab) ·c = a(b ·c), so the brackets are

in fact unnecessary. In matrix notation, ab is the product of the column

vector a and the row vector b, while the scalar product (or inner product)

a · b is the row a times the column b.

We can deduce the correct transformation law of a tensor under a rota-

tion of axes: its components transform just like the products of components

of two vectors. If we symbolize (A.2) formally as a′ = R·a, then the correct

transformation law of a tensor is T
′ = R ·T · R̃. (This denotes a product of

three 3 × 3 matrices.)

The use of the tensor product allows us to write some old results in a

new way. For example, for any vector a,

1 · a = a = i(i · a) + j(j · a) + k(k · a) = (ii + jj + kk) · a,

whence

ii + jj + kk = 1, (A.63)

as may easily be verified by writing out the components.

Similarly, we may write the relation (9.16) between angular momentum

and angular velocity in the form

J =
∑

m(r2ω − rr · ω) = I · ω,

where the inertia tensor I is given explicitly by

I =
∑

m(r21− rr).
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Note the difference between the unit tensor 1 and the inertia tensor I. It

is easy to check that the nine components of this equation reproduce the

relations (9.15).

Note that if T = ab, then T̃ = ba, whence in particular the inertia

tensor I is symmetric.

A.10 Eigenvalues; Diagonalization of a Symmetric Tensor

In this section, we discuss a theorem that has very wide applicability.

Let T be a symmetric tensor. A vector a is called an eigenvector of T,

with eigenvalue λ, if

T · a = λa, (A.64)

or, equivalently (T−λ1) ·a = 0. (Compare (11.17), which is also an eigen-

value equation.) The condition for the existence of a non-trivial solution is

that the determinant of the coefficients vanishes,

det(T − λ1) =

∣

∣

∣

∣

∣

∣

Txx − λ Txy Txz
Tyx Tyy − λ Tyz
Tzx Tzy Tzz − λ

∣

∣

∣

∣

∣

∣

= 0.

This is a cubic equation for λ. Its three roots are either all real, or else one

real and one complex conjugate pair. However, for a symmetric tensor T

with real elements the latter possibility can be ruled out.

To see this, suppose that λ is a complex eigenvalue, and let a be the

corresponding eigenvector, whose components may also be complex. Now,

taking the complex conjugate of T ·a = λa, we obtain T ·a∗ = λ∗a∗, where

λ∗ denotes the complex conjugate of λ, and a∗ = (a∗x, a
∗
y, a

∗
z). Multiplying

these two equations by a∗ and a respectively, we obtain

a∗ ·T · a = λa∗ · a, and a ·T · a∗ = λ∗a · a∗.

But since T is symmetric, the left-hand sides of these equations are equal,

by (A.62). Hence the right-hand sides must be equal too. Since a∗ · a =

|ax|2 + |ay|2 + |az|2 = a · a∗, this means that λ∗ = λ, i.e., λ must be real.

Thus we have shown that there are three real eigenvalues, say λ1, λ2, λ3,

and three corresponding real eigenvectors, a1,a2,a3. (We consider the case

where two eigenvalues are equal below.) Next, we show that the eigenvec-

tors are orthogonal. For, if

T · a1 = λ1a1, T · a2 = λ2a2,
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then, multiplying the first equation by a2 and the second by a1, and again

using the symmetry of T, we obtain

λ1a2 · a1 = λ2a1 · a2.

Thus if λ1 �= λ2, then a1 · a2 = 0.

If all three eigenvalues are distinct, then the three eigenvectors are or-

thogonal. Moreover, it is clear that if a is an eigenvector, then so is any mul-

tiple of a, so that we may choose to normalize it, defining e1 = a1/a1. Then

the three normalized eigenvectors form an orthonormal triad, e1, e2, e3. If

we choose these as axes, then T must take the diagonal form

T =

⎡

⎣

λ1 0 0

0 λ2 0

0 0 λ3

⎤

⎦ . (A.65)

For, since e1 = (1, 0, 0), T ·e1 is simply the first column of T, and this must

be λ1e1 = (λ1, 0, 0). Similarly for the other columns.

This relationship between T and the eigenvectors may also be ex-

pressed, using the tensor-product notation, in a co-ordinate-independent

form, namely

T = λ1e1e1 + λ2e2e2 + λ3e3e3. (A.66)

Finally, we have to show that these results still hold if two or three eigen-

values coincide. The simplest way to do this is to add a small quantity ε to

one of the diagonal components of T, to make the eigenvalues slightly differ-

ent. So long as ε �= 0, the tensor must have three orthonormal eigenvectors.

By continuity, this must still be true in the limit ε → 0. (The symmetry

of T is important here, because without the consequent orthogonality of

eigenvectors we could not exclude the possibility that two eigenvectors that

are distinct for ε �= 0 have the same limit as ε → 0. Indeed, this does

happen for non-symmetric tensors, as will be seen in a different context in

Appendix C.)

We have shown, therefore, that any symmetric tensor may be diagonal-

ized by a suitable choice of axes. This was the result we used for the inertia

tensor in Chapter 9. In that case, the eigenvectors are the principal axes,

and the eigenvalues the principal moments of inertia. The procedure for

finding normal co-ordinates for an oscillating system, discussed in §11.2,

is essentially the same. In that case, it is the potential energy function

that is brought to ‘diagonal’ form. Eigenvalue equations also appear in the
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analysis of dynamical systems in Chapter 13 and in many other branches

of physics, in particular playing a big role in quantum mechanics.

Problems

1. Given a = (3,−1, 2), b = (0, 1, 1) and c = (2, 2,−1), find:

(a) a · b, a · c and a · (b + c);

(b) a ∧ b, a ∧ c and a ∧ (b + c);

(c) (a ∧ b) · c and (a ∧ c) · b;

(d) (a ∧ b) ∧ c and (a ∧ c) ∧ b;

(e) (a · c)b − (b · c)a and (a · b)c − (b · c)a.

2. Find the angles between the vectors a ∧ b and c, and between a ∧ c

and b, where a, b, c are as in Problem 1.

3. Show that c = (ab + ba)/(a + b) bisects the angle between a and b,

where a and b are any two vectors.

4. Find ∇φ if φ = x3 − xyz. Verify that ∇∧∇φ = 0, and evaluate ∇2φ.

5. (a) Find the gradients of u = x + y2/x and v = y + x2/y, and show

that they are always orthogonal.

(b) Describe the contour curves of u and v in the xy-plane. What does

(a) tell you about these curves?

6. Draw appropriate figures to give geometric proofs for the following laws

of vector algebra:

(a + b) + c = a + (b + c);

λ(a + b) = λa + λb;

a · (b + c) = a · b + a · c.

(Note that a, b, c need not be coplanar.)

7. Show that (a ∧ b) · (c ∧ d) = a · c b · d − a · d b · c. Hence show that

(a ∧ b)2 = a2b2 − (a · b)2.

8. Express ∇ ∧ (a ∧ b) in terms of scalar products.

9. If the vector field v(r) is defined by v = ωk ∧ r, verify that ∇ · v = 0,

and evaluate the vorticity ∇ ∧ v.

10. *Show that, if u and v are scalar fields, the maxima and minima of u

on the surface v = 0 are points where ∇u = λ∇v for some value of λ.

Interpret this equation geometrically. (Hint : On v = 0 only two co-

ordinates can vary independently. Thus δz for example can usually be

expressed in terms of δx and δy. We require that δu should vanish for
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all infinitesimal variations satisfying this constraint.) Show that this

problem is equivalent to finding the unrestricted maxima and minima

of the function w(r, λ) = u− λv as a function of the four independent

variables x, y, z and λ. Here λ is called a Lagrange multiplier. What is

the role of the equation ∂w/∂λ = 0?

11. *Evaluate the components of ∇2A in cylindrical polar co-ordinates by

using the identity (A.28). Show that they are not the same as the

scalar Laplacians of the components of A.

12. *Find the radiation-gauge vector potential at large distances from a

circular loop of radius a carrying an electric current I. [Hint : Consider

first a point (x, 0, z), and expand the integrand in powers of a/r, keeping

only the linear term. Then express your answer in spherical polars.]

Hence find the magnetic field — the field of a magnetic dipole. Express

the results in terms of the magnetic moment µ, a vector normal to the

loop, of magnitude µ = πa2I.

13. *Calculate the vector potential due to a short segment of wire of di-

rected length ds, carrying a current I, placed at the origin. Evaluate

the corresponding magnetic field. Find the force on another segment,

of length ds′, carrying current I ′, at r. (To compute the force, treat the

current element as a collection of moving charges.) Show that this force

does not satisfy Newton’s third law. (To preserve the law of conserva-

tion of momentum, one must assume that, while this force is acting,

some momentum is transferred to the electromagnetic field.)

14. *Given u = cos θ and v = ln r, evaluate A = u∇v − v∇u. Find the

divergence and curl of A, and verify that ∇ · A = u∇2v − v∇2u and

that ∇ ∧ A = 2∇u ∧ ∇v.

15. *Show that the rotation which takes the axes i, j,k into i′, j′,k′ may

be specified by r → r′ = R ·r, where the tensor R is R = i′i+j′j +k′k.

Write down the matrix of components of R if the rotation is through

an angle θ about the y-axis. What is the tensor corresponding to the

rotation which takes i′, j′,k′ back into i, j,k? Show that R̃ · R = 1.

(Such tensors are said to be orthogonal.)

16. *The trace of a tensor T is the sum of its diagonal elements, tr(T) =
∑

i Tii. Show that the trace is equal to the sum of the eigenvalues, and

that the determinant det(T) is equal to the product of the eigenvalues.

17. *The double dot product of two tensors is defined as S:T = tr(S ·T) =
∑

i

∑

j SijTji. Evaluate 1 : 1 and 1 : rr. Show that

(3r′r′ − r′21) : (rr − 1
3r

21) = 3(r′ · r)2 − r′2r2.
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Hence show that the expansion (6.19) of the potential may be written

φ(r) =
1

4πε0

(

q
1

r
+ d · r

r3
+ 1

2Q :
rr − 1

3r
21

r5
+ · · ·

)

,

and write down an expression for the quadrupole tensor Q. Show that

tr(Q) = 0, and that in the axially symmetric case it has diagonal el-

ements − 1
2Q,− 1

2Q,Q, where Q is the quadrupole moment defined in

Chapter 6. Show also that the gravitational quadrupole tensor is re-

lated to the inertia tensor I by Q = tr(I)1 - 3I.

18. *In an elastic solid in equilibrium, the force across a small area may

have both a normal component (of compression or tension) and trans-

verse components (shearing stress). Denote the ith component of force

per unit area across an area with normal in the jth direction by Tij .

These are the components of the stress tensor T. By considering the

equilibrium of a small volume, show that the force across area A with

normal in the direction of the unit vector n is F = T · nA. Show also

by considering the equilibrium of a small rectangular volume that T is

symmetric. What physical significance attaches to its eigenvectors?
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Appendix B

Conics

Conic sections, or conics for short, are most simply defined as curves in

a plane whose equation in Cartesian co-ordinates is quadratic in x and y.

The name derives from the fact that they can be obtained by making a

plane section through a circular cone. They turn up in several physical

applications, particularly in the theory of orbits under an inverse square

law force. It may be useful to gather together the relevant mathematical

information.

B.1 Cartesian Form

The most general conic would have an equation of the form

Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0,

where A,B, . . . , F are real constants, but by choosing the axes appropri-

ately we can reduce this to a simpler form.

First, we look at the quadratic part, Ax2 + 2Bxy + Cy2. It is always

possible by rotating the axes to eliminate the constant B. This is another

example of the diagonalization process described in §11.3 and §A.10. The

quadratic part of the equation is then reduced to a sum of squares, A′x′2 +

C′y′2. We then forget about the original co-ordinates, and drop the primes.

The nature of the curve is largely determined by the ratio A/C of the new

constants.

Let us assume for the moment that A and C are both non-zero (we will

come back later to the special case where that isn’t true). Then we can

choose to shift the origin (adding constants to x and y, e.g., x′ = x+D/A)

so as to remove D and E. If F is also non-zero, we can move it to the other

side of the equation, and divide by −F , to get the standard form of the

409
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equation,

Ax2 + Cy2 = 1. (B.1)

F = 0 is a degenerate case: if A and C have the same sign, the only solution

is x = y = 0; if they are of opposite sign, the equation factorizes, and so

represents a pair of straight lines, y = ±
√

−A/C x.
We cannot allow both A and C in (B.1) to be negative; the equation

would then have no solutions at all. So we can distinguish two cases:

1. Both A and C are positive. Without loss of generality we can assume

that A ≤ C. (If A > C, we simply interchange the x and y axes.)

Defining new positive constants a and b by A = 1/a2 and C = 1/b2,

we finally arrive at the canonical form of the equation,

x2

a2
+
y2

b2
= 1. (B.2)

This is the equation of an ellipse (see Fig. B.1). Here a ≥ b; a is

the semi-major axis and b is the semi-minor axis. (In the special case

a

b

x

y

Fig. B.1

a = b, we have a circle of radius a.)

2. A and C have opposite signs. Again, without loss of generality, we can

assume that A > 0 and C < 0. So, defining A = 1/a2 and C = −1/b2,

we get

x2

a2
− y2

b2
= 1, (B.3)

the equation of a hyperbola (see Fig. B.2); a and b are still called the

semi-major axis and the semi-minor axis respectively, although it is no

longer necessarily true that a is the larger. Note that this curve has two
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b
a x

y

Fig. B.2

separate branches on opposite sides of the origin. At large distances,

it asymptotically approaches the two straight lines y = ±(b/a)x shown

on the figure.

We still have to consider the special case where one of the constants A

and C vanishes. (They cannot both vanish, otherwise we have simply a

linear equation, representing a straight line.) Without loss of generality, we

may assume that A = 0 and C �= 0. As before, we can shift the origin in the

y direction to eliminate E. On the other hand, D cannot be zero (otherwise

x doesn’t appear at all in the equation). This time, we can choose the origin

x

y

l

l/2

Fig. B.3

in the x direction to make F = 0 (by setting x′ = x + F/2D). Finally,

defining l = −D/C, we arrive at the canonical form

y2 = 2lx, (B.4)

which is the equation of a parabola (see Fig. B.3).
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Areas are easy to compute using the Cartesian form of the equation.

For example, we can solve (B.2) for y and integrate to find the area of the

ellipse; the result, which generalizes the familiar πr2 for a circle, is πab. (In

fact, the ellipse may be thought of as a circle of radius a which has been

squashed uniformly in the y direction in the ratio b/a.)

B.2 Polar Form

When we are looking for orbits under the action of a central force, it is

usually convenient to use polar co-ordinates. The form of the equation

that emerged from the discussion in §4.4 was

r(e cos θ ± 1) = l, (B.5)

where e and l are constants satisfying e ≥ 0, l > 0 (the upper and lower

signs refer to the attractive and repulsive cases, respectively).

It is interesting to see how this form is related to the Cartesian form

above. If we rearrange (B.5) and square it, we obtain for both signs the

equation

x2 + y2 = (l − ex)2. (B.6)

This can easily be put into one of the canonical forms above; which one

depends on the value of e.

I. If e < 1, we can ‘complete the square’ in (B.6) and write it as

(1 − e2)x2 + 2elx+
e2l2

1 − e2
+ y2 =

l2

1 − e2
. (B.7)

Dividing by l2/(1 − e2), this reduces almost to the form (B.2), where

a =
l

1 − e2
, b =

l√
1 − e2

. (B.8)

The only difference is that the origin is not at the centre of the ellipse:

(B.7) is equivalent to

(x+ ae)2

a2
+
y2

b2
= 1, (B.9)

an ellipse with centre at (−ae, 0).
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II. If e > 1, we complete the square in the same way and divide by

l2/(e2 − 1), obtaining

(x− ae)2

a2
− y2

b2
= 1, (B.10)

where now

a =
l

e2 − 1
, b =

l√
e2 − 1

. (B.11)

This is a hyperbola with centre at (ae, 0). The left-hand branch, intersect-

ing the x-axis at (ae − a, 0), corresponds to an orbit under an attractive

inverse square law force, while the right-hand one, meeting it at (ae+a, 0),

corresponds to the repulsive case.

III. Finally, if e = 1, the equation can be written

y2 = l2 − 2lx, (B.12)

which is a parabola with its apex at (l/2, 0), and oriented in the opposite

direction to (B.4).

In all these cases, the position of the origin is one focus of the conic.

In cases I and II there is a second focus symmetrically placed on the other

side of the centre; for the parabola, the second focus is at infinity. (The

plural of focus is foci.) The reason for the name is an intriguing geometric

property (see Problem 2): if we have a perfect mirror in the shape of an

ellipse light from a source at one focus will converge to the second focus.

Similarly, a source at the focus of a parabolic mirror generates a parallel

beam, which makes parabolic mirrors ideal for certain applications. For a

hyperbolic mirror with a source at one focus, the reflected light will appear

to come from a virtual image at the second focus.

Problems

1. The equation (B.2) of an ellipse can be written in parametric form as

x = a cosψ, y = b sinψ. Show [using the identity b2 = (1 − e2)a2)] that

the distances between the point labelled ψ and the two foci, (±ae, 0), are

a(1∓e cosψ), and hence that the sum of the two distances is a constant.

(This result provides a commonly used method of drawing an ellipse, by

tying a string between two pegs at the foci, stretching it round a pencil,

and drawing a curve while keeping the string taut.)
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2. *Using the parametrization of the previous question, show that the slope

of the curve is given by dy/dx = −(b/a) cotψ. Hence show that the

angles between the curve and the two lines joining it to the foci are

equal. (One way is to find the scalar products between the unit vector

tangent to the curve and the unit vectors from the two foci. This result

provides a proof of the focussing property: light from one focus converges

to the other.)

[The results stated in Problems 1, 2 imply that all radiation originating

at one focus of an ellipse at a particular time is then reflected to the

other focus with the same time of arrival — a consequence with many

applications, both peaceful and otherwise.]



Appendix C

Phase Plane Analysis near

Critical Points

In this appendix we give a summary of the types of behaviour exhibited by

a general autonomous dynamical system near critical points in the phase

plane (n = 2), as indicated in §13.3.

C.1 Linear Systems and their Classification

We saw in §13.3 that, in the local expansion near a critical point (x0, y0),

the key to the local behaviour and to the stability of the equilibrium at the

critical point is, normally, the behaviour of the linear system
[

ξ̇

η̇

]

≡ d

dt

[

ξ

η

]

= M

[

ξ

η

]

, (C.1)

which is obtained from (13.14) by neglecting higher-order terms in the ex-

pansion. The 2 × 2 Jacobian matrix M [a tensor of valence 2 (§A.10)]

has constant entries, which are found as derivatives of the functions

F (x, y), G(x, y) evaluated at the critical points (x0, y0), as in (13.11),

(13.13).

Consider

M =

[

a b

c d

]

,

where a, b, c, d are real constants. For the critical point itself, at which ξ =

0, η = 0, to be an isolated critical point it is necessary that the determinant

of M is non-zero. That is to say ad− bc �= 0 and M then has an inverse. If

this condition is not satisfied, so that M is singular, then there is at least a

critical line through ξ = 0, η = 0, rather than just the single point; we do

not consider this case further here.

415
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If we seek a solution to (C.1) in the form

ξ(t) ≡
[

ξ

η

]

=

[

ξ0
η0

]

eλt ≡ ξ0e
λt, (C.2)

then we require

Mξ0 = λξ0 (C.3)

and this is an eigenvalue/eigenvector problem. (See §A.10, although M

may not now be symmetric.)

Here the eigenvalues λ1, λ2 satisfy the quadratic equation

λ2 − (a+ d)λ+ (ad− bc) = 0,

that is

λ2 − (trM)λ+ (detM) ≡ (λ− λ1)(λ − λ2) = 0, (C.4)

so that λ1 + λ2 = trM , the trace of M and λ1λ2 = detM , the determi-

nant of M (see Appendix A, Problem 16). The eigenvalues λ1, λ2 lead

to corresponding eigenvectors ξ01, ξ02 respectively, in principle, but, since

the matrix M is not necessarily symmetric we have eigenvalues which may

not be real and a set of eigenvectors which may not be orthogonal or even

complete.

There are various cases depending on the nature of the eigenvalues and

we can consider separately the cases λ1 �= λ2 and λ1 = λ2.

1. λ1 �= λ2. In this case, because of the linearity of the system, we can

write

ξ(t) = c1ξ01e
λ1t + c2ξ02e

λ2t, (C.5)

with c1, c2 constants. The vectors ξ01, ξ02 are independent in this case

and any vector can be expressed as a linear combination of them. In

particular ξ0 ≡ ξ(0) leads to the unique values of c1, c2 corresponding

to given initial conditions. In this situation we can carry out a linear

change of variables

[

ξ

η

]

= S

[

ξ̄

η̄

]

,
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similar to the change to normal co-ordinates in §11.4, in such a way that

d

dt

[

ξ̄

η̄

]

=

[

λ1 0

0 λ2

] [

ξ̄

η̄

]

. (C.6)

In this similarity transformation the 2×2 matrix S = [ξ01

... ξ02] and the

diagonal matrix in (C.6) above then takes the form S−1MS. It should

be noted here that λi, ξ0i, ci (i = 1, 2) could be complex, but even then

(C.5) is the formal expression of the solution for ξ. In the case when M

is symmetric then the eigenvalues λ1, λ2 are real and the eigenvectors

ξ01, ξ02 are orthogonal. If the eigenvectors are normalized to have unit

length then S−1 ≡ S̃, i.e. S is a rotation matrix .

2. λ1 = λ2 (≡ λ). In this case, λ is necessarily real and we may find that

the matrix reduction to diagonal form indicated above may, or may not,

be possible:

(a) If we can find two distinct eigenvectors corresponding to λ then the

above machinery will go through trivially, since the matrix M = λI

in this case, where I is the unit matrix, and all non-zero vectors are

eigenvectors!

(b) If there are not two distinct eigenvectors corresponding to λ then

the best that can be done by a linear transformation is to reduce

the system to

d

dt

[

ξ̄

η̄

]

=

[

λ 0

1 λ

][

ξ̄

η̄

]

, (C.7)

since the diagonal form is not now achievable. The system (C.7) has

the solution

[

ξ̄

η̄

]

= c1

[

0

1

]

eλt + c2

[

1

t

]

eλt, (C.8)

with c1, c2 constants.

Depending on the eigenvalues λ1, λ2 there are then various possible cases

to consider. These are listed below together with sketches of typical pat-

terns of local trajectories. The orientation and sense of rotation in these

patterns depends on the system concerned. However, in each case the di-

rections of the arrows indicate evolution with time t along the trajectories.
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Case 1

λ1, λ2 real, unequal, same sign =⇒ (improper) node, e.g. negative sign

(Fig. C.1).

Fig. C.1

All trajectories except for one pair approach the critical point tangent

to the same line. The critical point is asymptotically stable.

If the sign of λ1, λ2 is positive then the local structure is similar to that

above, but with the sense of the arrows reversed. The critical point is then

unstable.

Case 2

λ1, λ2 real, equal or unequal magnitude, opposite sign =⇒ saddle (or

hyperbolic point) (Fig. C.2). This type of critical point is always unstable.

Fig. C.2
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Case 3

λ1 = λ2 = λ (necessarily real).

1. When M = λI we have a (proper) node, e.g. λ negative (Fig. C.3). This

critical point is asymptotically stable.

Fig. C.3

If λ is positive then the local structure is similar to that above, but with

the sense of the arrows reversed. The critical point is then unstable.

(A proper node is sometimes called a star, focus, source or sink as ap-

propriate.)

2. When M may not be diagonalized, so that there is only a single eigen-

vector corresponding to λ, we have an improper (or inflected) node, e.g.

λ negative (Fig. C.4). This critical point is asymptotically stable.

Fig. C.4
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If λ is positive then the local structure is similar to that above, but with

the sense of the arrows reversed. The critical point is then unstable.

Case 4

λ1,2 a complex conjugate pair µ ± iν, with µ �= 0 =⇒ spiral (point), e.g.

µ negative (Fig. C.5).

Fig. C.5

This critical point is asymptotically stable.

If µ is positive then the local structure is similar to that above, but with

the sense of the arrows reversed. The critical point is then unstable.

(A spiral is sometimes called a spiral source or spiral sink as

appropriate.)

Case 5

λ1,2 a pure imaginary conjugate pair ±iν =⇒ centre (or elliptic point)

(Fig. C.6).

The sense of the arrows may be different, but this type of critical point

is always stable.

We can solve equation (C.4) for the eigenvalues λ1, λ2 in terms of trM

and detM obtaining

λ1,2 = 1
2 (trM ±

√
∆), (C.9)

where the discriminant ∆ = (trM)2−4(detM). We may then represent the

types of behaviour in the phase plane near a critical point schematically.



Phase Plane Analysis near Critical Points 421

Fig. C.6

(See Fig. C.7.) Note that along the line detM = 0 the critical point is not

isolated.

Fig. C.7

C.2 Almost Linear Systems

We have seen that the local analysis near a typical critical point in the

phase plane leads to (13.14) and this equation differs from the linear system

(C.1) in that it includes some higher-order terms. For the almost linear

system (13.14) the classification of the corresponding linear system (C.1)
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determines the local phase portrait and the type of stability in almost every

case. Small changes produced by the higher-order terms are evidently going

to be crucial, if at all, only in the particular cases:

Case 3

The equal real eigenvalues λ, λ (node) could split to give λ ± ε (node) or

λ± iε (spiral), where ε is small. However, the stability of the critical point

would still be just that predicted by the linear system analysis.

Case 5

The pure imaginary conjugate pair of eigenvalues ±iν (centre) could become

±i(ν + ε) (centre) or ε ± iν (spiral), where ε is small. Naturally a centre

would still indicate that the critical point is stable. However, the spiral

would be crucially dependent for its stability on the sign of the new real

part ε of the eigenvalue pair. If ε > 0 then the critical point is unstable,

whereas if ε < 0 then the critical point is asymptotically stable.

So, for the systems we are considering, it is only when the exactly linear

analysis of §C.1 predicts that a critical point is a centre that we need to be

suspicious of the predictions of the exactly linear analysis. Whether (13.14)

has a true centre or an unstable or asymptotically stable spiral has to be

resolved by a closer scrutiny of the particular system in hand.

It is the case, in fact, that the trajectories near a critical point in the

phase plane have a topological equivalence in the linear and almost linear

systems except when there is a zero eigenvalue (i.e. the critical point is not

isolated) or when the eigenvalues are pure imaginary (i.e. a centre) — this

is guaranteed by a theorem due to Hartman and Grobman. For example,

we can examine the system

dx

dt
= x,

dy

dt
= −y + x2,

(C.10)

which has only one critical point (at the origin x = 0, y = 0). For the linear

system, in the expansion about the origin we have

M =

[

1 0

0 −1

]

,
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so that the eigenvalues are λ1 = 1, λ2 = −1 with eigenvectors

[

1

0

]

,

[

0

1

]

respectively. The trajectories near the origin, which is a saddle, are indi-

cated in Fig. C.8(a). For the exact nonlinear system (C.10) we can write

dy

dx
= − y

x
+ x, (C.11)

so that

y =
x2

3
+
c

x
, with c constant,

together with a second solution x = 0 (for all y).

The exact family of trajectories near the origin is indicated in

Fig. C.8(b). It should be noted that the trajectories which go directly

into and directly out of the critical point O (respectively the stable and un-

stable manifolds) correspond directly at and near O for the exactly linear

and almost linear systems — a general result usually known as the stable

manifold theorem.

Fig. C.8

C.3 Systems of Third (and Higher) Order

As we indicated in §13.6, higher-order systems can be analyzed in a similar

fashion to that carried out in §13.3 and earlier in this appendix. That is to

say the critical points are found and local analysis effected about each of
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them by linearization. The resulting eigenvalue/eigenvector problems de-

termine the local stability of the critical points and the local phase portrait

structures normally determine the global phase portrait for the complete

system.

For a third-order system, e.g. the Lorenz system of §13.6, the matrix M

for a particular critical point is 3×3 [again a tensor of valence 2 (§A.9,10)],

so that the three eigenvalues satisfy a cubic equation. This implies that at

least one of the eigenvalues must be real, with the others either both real

or a complex conjugate pair. We only note here that, if all the eigenval-

ues are negative real or have negative real part, then the critical point is

asymptotically stable. Even if only one of the eigenvalues is positive or if

the complex conjugate pair has positive real part, then the critical point is

unstable.

Problems

1. Find the critical points of the following systems and classify them ac-

cording to their local linear approximations:

(a) ẋ = −3x+ y, ẏ = 4x− 2y;

(b) ẋ = 3x+ y, ẏ = 2x+ 2y;

(c) ẋ = −6x+ 2xy − 8, ẏ = y2 − x2;

(d) ẋ = −2x− y + 2, ẏ = xy;

(e) ẋ = 4 − 4x2 − y2, ẏ = 3xy;

(f) ẋ = sin y, ẏ = x+ x3;

(g) ẋ = y, ẏ =
[

ω2−α−y2

1+x2

]

x in the cases ω2 < α and ω2 > α.

2. For the nonlinear oscillator equation ẍ + x = x3, write ẋ = y and show

that there are two saddle points and one centre in the linear approxi-

mation about the critical points in the (x, y) phase plane. Integrate the

equations of the system to obtain an ‘energy’ equation and use this to

show that

(a) the centre is a true centre for the full system;

(b) the equation of the separatrices through the saddles is

2y2 = x2(x2 − 2) + 1.
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Discrete Dynamical Systems — Maps

In this appendix we consider discrete dynamical systems in which a space

is effectively mapped onto itself repeatedly. We recognized in Chapter 13

that for some systems it is appropriate and useful to observe at discrete

time intervals, which are not necessarily equal — this is, for example, often

the case for biological systems.

Also we saw in §14.2 the concept of a Poincaré return map, where the

evolution of a system through its dynamics induces a map of a Poincaré

section onto itself. Examining properties of maps, in their own right, will

give insight into mechanisms of chaotic breakdown in continuous systems

as well.

D.1 One-dimensional Maps

We consider a map given by

xn+1 = F (xn), (D.1)

for n = 0, 1, 2, . . . and with F a known function, and consider possible be-

haviours of xn for suitable initial values x0, as we iterate to find successively

x1 = F (x0), x2 = F (x1) ≡ F
(

F (x0)
)

≡ F (2)(x0), etc. We can expect to

find any fixed points X as solutions of

X = F (X). (D.2)

To examine the stability of the fixed point X , we may write xn + εn = X ,

for each n, and, when εn is small, we can expand F (xn) in (D.1) in the

form

F (xn) = F (X − εn) = F (X) − εnF
′(X) + 1

2ε
2
nF

′′(X) + . . . , (D.3)

425
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where F ′(X) = [dF (x)/dx]x=X , etc.

A fixed point X is asymptotically stable (and therefore an attractor) if

|F ′(X)| < 1. We may consider different cases (where εn → 0):

• 0 < |F ′(X)| < 1 =⇒ εn+1 � F ′(X)εn as n → ∞, and we have

first-order convergence.

• F ′(X) = 0, F ′′(X) �= 0 =⇒ εn+1 � − 1
2F

′′(X)ε2n as n → ∞, and we

have second-order convergence.

While this sequence may be continued, the key criterion is that stated above

for |F ′(X)|. We note that the case |F ′(X)| > 1 leads to instability of X ,

and that the case |F ′(X)| = 1 depends more specifically on the function

F (X).

A familiar example of what is normally second-order convergence is

the Newton–Raphson iteration process to find roots of a single equation

f(x) = 0. Here xn+1 = xn − f(xn)/f ′(xn) and each root has a basin of

attraction, so that we can find all the roots by judicious choices of x0.

The very simplest map is the linear map:

xn+1 = rxn, (D.4)

with r constant (and, say, non-negative), and it is evident that xn = rnx0

in this case. Here there are various behaviours depending on r:

• 0 ≤ r < 1: xn → 0 for all x0 [asymptotic stability of X = 0].

• r = 1: xn = x0 for all x0 [steady state].

• r > 1: xn = x0 exp(n ln r) [exponential growth].

If this were a biological model, of e.g. a seasonal breeding population xn,

then the rate constant r is crucial in determining the fate of any initial

population x0.

The logistic map

A simple nonlinear map, derived from (D.4), is

xn+1 = rxn − sx2
n, (D.5)

which is called the logistic map and has apparent similarity with the logistic

differential equation (13.3). In a biological context the rate constant r,

quantifying the ability of the population to reproduce, is balanced by the

parameter s, which quantifies the effect of overcrowding. This model formed

the centrepiece of what has become a very influential paper — ‘Simple
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mathematical models with very complicated dynamics’, May, Nature, 261,

459–467, 1976.

A simple scaling x̄n = sxn/r leads to x̄n+1 = rx̄n(1 − x̄n), and it is

evident that the overbar may then be dropped, in order to find the map

xn+1 = rxn(1 − xn), (D.6)

which is the logistic map in standard form, with r the single key parameter.

Naturally the primary physical/biological interest is in the case where

the x interval [0, 1] is mapped by (D.6) onto [0, 1], which requires 0 ≤ r ≤ 4

— for other applications this r restriction might well be absent.

Despite the apparent similarity with the continuous system (13.3) the

maps (D.5), (D.6) have some very different and complex properties.

We see immediately that there are two fixed points of (D.6) — atX = 0,

X = 1 − 1/r — and, in each case, F ′(X) = r(1 − 2X).

It is helpful for maps to consider [see Fig. D.1(a)] a plot of y = x and

y = F (x) so that by tracing the vertical and horizontal lines between the

two we can follow the sequence x0 → x1 → x2 → . . . , and thus see whether

or not it might converge.

Fig. D.1

The behaviours of the map (D.6) for different values of r can be sum-

marized as follows:

• 0 ≤ r < 1: X = 0 is asymptotically stable and X = 1 − 1/r is unsta-

ble. [X = 0 is a point attractor — if the corresponding linear model

population cannot sustain itself then overcrowding makes it worse!]

• 1 < r < 3: X = 0 is unstable and X = 1 − 1/r is asymptotically stable

— see Fig. D.1(a) for example. [X = 1 − 1/r is a point attractor —
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exponential growth is stabilized by overcrowding, in very similar fashion

to the behaviour of the logistic differential equation (13.3).]

• 3 < r ≤ 4: X = 0 and X = 1 − 1/r are now both unstable. As r

increases successive ‘period-doubling bifurcations ’ occur as asymptotic

stability is exchanged between lower- and higher-order cycles (termed a

supercritical flip bifurcation):

* 3 < r < 1 +
√

6 = 3.449 48 · · · : xn → an asymptotically stable

2-cycle (or period-2 solution). If we examine xn+2 = F (xn+1) =

F (2)(xn), then we obtain an equation of degree 4 for the fixed points

of this iterated mapping. Of course X = 0, X = 1 − 1/r are two

of the roots of this equation. The nontrivial solutions X1, X2, such

that F (X1) = X2, F (X2) = X1 [see Fig. D.1(b)], are roots of the

quadratic r2X2 − r(r + 1)X + (r + 1) = 0. For asymptotic stability

it is necessary (see Problem 1) that |4+2r− r2| < 1 or equivalently,

for positive r, 3 < r < 1 +
√

6.

* 3.449 48 · · · < r < 3.544 09 · · · : xn → an asymptotically stable 4-

cycle found from an equation of degree 16; four more roots are the

trivial solutions 0, 1 − 1/r,X1, X2 (the other roots, when real, give

4-cycles arising through a different process).

* 3.544 09 · · · < r < 3.564 40 · · · : xn → an asymptotically stable 8-

cycle, and so on (each time in a shorter interval in r) . . . until

* r = 3.569 94 · · · : Accumulation point of 2∞-cycle.

* 3.569 94 · · · < r ≤ 4: For some values of r there are asymptotically

stable cycles of different lengths, but for others the xn values range

seemingly over a whole continuous interval, in an apparently random

fashion. An intriguing fact is that odd-period cycles only appear for

r > 3.678 57 · · · .

The logistic map attractors are shown in Fig. D.2. The numbers along the

top are the cycle periods.

It should be noted that this figure has an approximate self-similarity

at higher magnification, in that the period-doubling cascade is broadly re-

peated as other-period asymptotically stable cycles become unstable — e.g.

the period-3 cycle in Fig. D.2.

That the period-doubling proceeds broadly in geometric fashion in the

limit was discovered by Feigenbaum in 1975. Here the r-intervals ∆i be-

tween bifurcations and the measures di of width in X of successive cycles
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Fig. D.2

are such that (see Figs. D.2, D.3)

∆i/∆i+1 → δ = 4.669 201 6 . . . ,

di/di+1 → α = 2.502 907 8 . . . ,
(D.7)

in each case in the limit as i→ ∞.

Feigenbaum noted that essentially all ‘humped’ mapping functions F (x)

lead to intersections of y = x with y = F (x), y = F (2)(x), y = F (4)(x), . . .

which are similar up to a rescaling. In a process of ‘renormalization’ the

precise form of F (x) is lost and in 1976 Feigenbaum discovered a universal

function g(x), which is self-reproducing under such rescaling and iteration,

so describing this universal property:

g(x) = −αg
[

g

(−x
α

)]

(D.8)

(see Feigenbaum, Journal of Statistical Physics, 21, 669–706, 1979).

The universality leads to δ, α as universal constants and δ is usually

identified as the Feigenbaum number .
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Fig. D.3

As to the onset of cycles with other periods, there is a theorem, due to

Sarkovskii (1964), which is as follows:

If a mapping function F (x) has a point xp which is cyclic of order

p, then it must also have a point xq of period q, for every q which

precedes p in the sequence:

1 ⇐ 2 ⇐ 4 ⇐ · · · ⇐ 2n ⇐ · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · ⇐ 2m.9 ⇐ 2m.7 ⇐ 2m.5 ⇐ 2m.3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · ⇐ 22.9 ⇐ 22.7 ⇐ 22.5 ⇐ 22.3

· · · ⇐ 2.9 ⇐ 2.7 ⇐ 2.5 ⇐ 2.3

· · · ⇐ 9 ⇐ 7 ⇐ 5 ⇐ 3.

For example, the existence of a 3-cycle implies the existence of cycles of all

the other periods!

Naturally the odd periods cannot arise from period-doubling, but do so

via a rather different process which may be examined by similar methods

to those employed above.

This theorem can be proved using a continuity/intermediate value the-

orem argument. However it says nothing about stability of these cycles, or

the ranges of r (in our logistic example) for which they may be observed.

The vast majority of these cycles are unstable when all are present, and

it is this which leads to a brief summary statement in the form ‘Period 3
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implies chaos’, as essentially random behaviour of iterates xn occurs (Li

and Yorke, American Mathematical Monthly, 82, 985–992, 1975, in which,

incidentally, the term chaos was first introduced!).

What can be said about values of r in the logistic map which lead to

distributions of iterates, rather than to asymptotically stable cycles?

Analytically this is a tough problem. However, it happens that there

are two positive values of r for which a formal exact solution of (D.6) is

known — r = 2 and r = 4.

The former (r = 2) allows (1 − 2xn+1) = (1 − 2xn)
2 leading to xn =

1
2 [1 − (1 − 2x0)

2n

]. This is not especially interesting, since xn → 1
2 as we

should expect.

However the latter possibility (r = 4) allows us to substitute xn =
1
2 [1 − cos(2πθn)] ≡ sin2(πθn) and this leads us to θn+1 = 2θn and then

θn = 2nθ0. Here θ is evidently periodic, with period 1, in that the same

x is generated by θ and by θ + 1. Thus we may write any θ0 we choose

in a binary representation just using negative powers of 2 — for example,

θ0 = 1
2 + 1

8 + 1
16 + 1

64 + · · · = 0.101 101 . . . . Then θ1 = 0.011 01 . . . , θ2 =

0.110 1 . . . , etc, since the integer part may be cancelled at each stage on

account of the periodic property.

For almost all choices of θ0 then the θn will be uniformly distributed on

the interval [0, 1], since each digit in the binary expansion of θ0 could be

chosen with equal likelihood to be a 0 or a 1. As a consequence of θ being

uniformly distributed, then x is not. Indeed x has a probability distribution

given by P (x) = 1/[π
√

x(1 − x)] (see Figs. D.4, D.2).

0 1 x

P(x) = 1/ [π√x(1−x)]

Fig. D.4
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We note that P (x) itself is the attractor here for r = 4, in the sense

that for almost all choices of x0 the distribution of xn will approach P (x)

for large n. It is called an invariant probability distribution.

For other values of r there are theoretical results for the correspond-

ing probability distribution attractors (via an equation for the distribution

function — Perron–Frobenius), but no slick result like that above for r = 4.

The distribution attractors are also characterized by an exponential

divergence of iterates, leading to the sensitivity to initial conditions charac-

teristic of chaos. If we choose to examine x0 and x0 +ε0, with ε0 very small,

then εn � ε0 exp(λn) on average, and we have divergence or convergence of

iterates according as λ > 0 or λ < 0. Here λ is a Lyapunov exponent (see

§13.7).

Since we have F (n)(x0 + ε0) − F (n)(x0) � ε0e
λn, then we have

λ � lim
n→∞

{

1

n
ln

(
∣

∣

∣

∣

d

dx
F (n)(x)

∣

∣

∣

∣

)}

= lim
n→∞

{

1

n

n−1
∑

i=0

ln |F ′(xi)|
}

. (D.9)

Values of λ can be found by numerical computation. In measuring

λ empirically in a particular practical case, we allow n to become large

enough so that our estimate of λ can settle down to a steady value. We

also average over various different x0, in order to avoid an atypical result

through a single unfortunate choice. For the logistic map Fig. D.5 shows a

plot of λ as r varies.

Here F ′(x) = r(1 − 2x), so that we expect:

• 0 < r < 1: λ = ln r,

• 1 < r < 3: λ = ln |2 − r| (leading to an infinite spike when r = 2),

• 3 < r < 1 +
√

6: λ = 1
2 ln |r(1 − 2X1)| + 1

2 ln |r(1 − 2X2)| [leading to an

infinite spike when X1 = 1
2 (requiring r = 1 +

√
5 = 3.236)],

• r = 4: since P (x) = 1/[π
√

x(1 − x)] so we have

λ =

∫ 1

0

(ln |F ′(x)|)P (x) dx =

∫ 1

0

ln |4(1 − 2x)| dx
π
√

x(1 − x)
= ln 2 = 0.693 147 . . . .

In any event, the regions of r for which there are positive values of λ indi-

cate the sensitivity to initial conditions at these r values. While there are

other measures of the complexity/disorder of the iterates in these cases —
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Fig. D.5 [Baker and Gollub (Chaotic Dynamics, 2nd ed., Cambridge University Press,
1996)]

e.g. the system ‘entropy’ — these will not be pursued further here. However,

see Problem 4 for another (and simpler) example of a chaotic map.

The logistic map (D.6), together with other similar maps, involves

stretching and folding, so that states diverging exponentially are still

broadly confined to a bounded region. The loss of information about initial

conditions, as the iteration process proceeds in a chaotic regime, is asso-

ciated with the non-invertibility of the mapping function F (x), i.e. while

xn+1 is uniquely determined from xn, each xn can come from 2 possible

xn−1, 4 possible xn−2, etc, and eventually from 2n possible x0. Hence

system memory of initial conditions becomes blurred!

Many continuous systems — for example the Lorenz system of §13.6 —

exhibit a similar period-doubling in their dynamics.

D.2 Two-dimensional Maps

For two-dimensional maps any new universality has proved harder to find!

However, there are interesting phenomena. We may write our generic map

in the form

xn+1 = F (xn, yn),

yn+1 = G(xn, yn),
(D.10)
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for integer n and with F,G known functions. Again we may seek fixed

points (X,Y ) as solutions of

X = F (X,Y ),

Y = G(X,Y ).
(D.11)

By a Taylor expansion, near X,Y and similar to that carried out in §13.3

and in Appendix C, we obtain

(

xn+1 −X

yn+1 − Y

)

�M

(

xn −X

yn − Y

)

, with M =

(

∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

)

(x,y)=(X,Y )

. (D.12)

It now follows that (xn, yn) → (X,Y ) if and only if the eigenvalues of the

matrix M all have modulus less than 1; this is needed to force Mn → the

zero matrix as n→ ∞.

When instability sets in as parameters are changed, we then typically

have a 2-cycle to examine with (X1, Y1) � (X2, Y2) and where these points

are the solutions of

X = F [F (X,Y ), G(X,Y )],

Y = G[F (X,Y ), G(X,Y )],
(D.13)

other than the fixed points of (D.10) found earlier and which satisfy (D.11).

The asymptotic stability of this 2-cycle depends on the eigenvalues of the

matrix product

M1M2 =

(

∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

)

(x,y)=(X1,Y1)

(

∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

)

(x,y)=(X2,Y2)

, (D.14)

and so on.

The Hénon map

Probably the most celebrated example is the Hénon map (Hénon, Commu-

nications in Mathematical Physics, 50, 69–77, 1976):

xn+1 = 1 − ax2
n + yn,

yn+1 = bxn,
(D.15)

with a, b real parameters, and where the normal physical interest is in |b| ≤
1. This map was constructed to exhibit some behaviours similar to those

of the Lorenz system of §13.6. Geometrically the map may be considered
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to be a composition of three separate simple maps — an area-preserving

fold, a contraction |b| in the x direction, an area-preserving rotation.

There are two fixed points given by

X = X± ≡ [−(1 − b) ±
√

(1 − b)2 + 4a]/2a,

Y = Y± ≡ bX±,
(D.16)

and these are real and distinct if and only if a > a0 = − 1
4 (1 − b)2. One

of the fixed points is then always unstable and the other is asymptotically

stable if a < a1 = 3
4 (1 − b)2 (see Problem 7). For a > a1, both fixed points

are unstable and we get period-doubling to a 2-cycle, 4-cycle, etc. The

two-cycle stability is determined through (D.14) by the eigenvalues of the

matrix product

M1M2 =

(

4a2X1X2 + b −2aX1

−2abX2 b

)

.

This leads to asymptotic stability of the 2-cycle only when a1 < a < a2

with a2 = (1− b)2 + 1
4 (1+ b)2. The period-doubling cascade then continues

(see Fig. D.6).

−1

−1

0

0.3

1

1

2 3 4 5 6 a

a

b

*

*

stable two-cycle

one stable,
one unstable
fixed point

Henon chaotic
attractor

a  = − −(1−b)0

0

1
4

2

a  =  −(1−b)1

1

3
4

2

2

b a a a(2  ) a(  )

0 −0.25 0.75 −1.40
0.3 −0.1225 0.3675 −1.06 1.40

∞

b=0 corresponds to the one-dimensional logistic map (see Problem 2)

Fig. D.6
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Beyond the cascade, and embedded among other-period cycles, there

are (a, b) values where the attractor is very complex (see, e.g., Fig. D.7,

where a = 1.4, b = 0.3).

Fig. D.7

Here there is stretching along the strands of the attractor and squeezing

across them — with associated Lyapunov exponents which are respectively

positive (along) and negative (across) (see Problem 8).

This chaotic attractor — termed ‘strange’ — has some similar features

to the Lorenz attractor of Fig. 13.20. It also has a fractal character in that

it has a broad similarity in features and relative scale at all magnifications.

The repetition of stretching, squeezing and folding onto the original

region is characteristic of a technical construct — the Smale ‘horseshoe’

(1960) — which is now known to be a trademark of chaotic systems.

Smale ‘stretched’ the unit square in one co-ordinate direction and

‘squeezed’ it in the other direction, then placing the resulting strip (with

one ‘fold’) over the original square — with inevitable overlap. Infinite

repetition of this sequence of operations leads to the identification of an at-

tractor consisting of all the points which remain within the original square

indefinitely. This attractor has great topological complexity and, while it

guarantees the ‘sensitivity to initial conditions’ of chaos, proving its exis-

tence for a particular system may be very tough.
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A formal demonstration of chaotic dynamics for the Hénon map is con-

tained in a paper by Benedicks and Carleson (Annals of Mathematics, 133,

73–169, 1991).

In passing (and for reference in §D.3) we note that a map which pre-

serves area would have | detM | = 1 in (D.12) and then the stretching and

squeezing exactly compensate each other (see Problem 11). For the Hénon

map this is the case only when |b| = 1. Equal-area maps are of special

interest since the Poincaré return map for a section through a Hamiltonian

system (see §14.2) has the equal-area property. Some consequences are

explored briefly in §D.3.

D.3 Twist Maps and Torus Breakdown

In §14.1 we noted that each trajectory of an integrable Hamiltonian system

with n degrees of freedom is confined to the surface of an n-torus in the 2n-

dimensional phase space. The n-tori corresponding to the range of initial

conditions are ‘nested’ in the phase space.

In §14.2 we introduced the concept of a Poincaré surface of section, as

a slice through the dynamical structure. For n = 2 degrees of freedom this

section of the nested torus structure is a continuum of closed curves, each

one of which is intersected by one of its own torus trajectories in a sequence

of points (see Fig. 14.4).

If we make use of action/angle variables, as described in §14.3 and par-

ticularly in the polar form of Fig. 14.5(c), then the closed curves of the

Poincaré section can be taken as concentric circles. The intersection points

of a trajectory with its own particular one of these circles (of radius r)

will necessarily be twisted successively around the origin (the centre of the

circle) through an angle 2πα. Here α is the rotation number , which is the

ratio of normal frequencies characterizing the particular torus concerned —

it therefore depends on r.

We can then introduce the notion of a twist map, T [Moser (1973)]; in

polars:

(

rn+1

θn+1

)

=

(

rn
θn + 2πα(rn)

)

≡ T

[(

rn
θn

)]

. (D.17)

When a perturbation Hamiltonian is introduced, as in §14.6, we can



438 Classical Mechanics

model the modified situation using a perturbed twist map, Tε:

(

rn+1

θn+1

)

=

(

rn + εf(rn, θn)

θn + 2πα(rn) + εg(rn, θn)

)

≡ Tε

[(

rn
θn

)]

, (D.18)

with ε small and positive and with f, g known smooth functions.

We can now ask what happens to a circle of a particular radius, which

is mapped to itself (with a twist) by T , as the perturbation quantified

by ε in Tε grows from zero — i.e. as the integrable system T becomes a

near-integrable system Tε, in such a way that area is still preserved.

In fact the answer to this question depends on the rotation number α

corresponding to our particular circle chosen.

If α is an irrational number then, for ε small enough, the circle undergoes

some distortion (perturbation) but is certainly not destroyed. This is also

true for the corresponding torus in the full phase space. This result is in

accord with the KAM theory referred to in §14.6.

As we shall see, it is circles for (D.17), and their tori, corresponding to

rational α, which break down under perturbation, leading to sensitivity to

initial conditions and chaos.

The rational α are ‘scanty, but dense’ among the real numbers (see

Problem 12) and these α correspond to resonances in the system. As in the

discussion of the problem of small denominators in §14.6, the sensitivity to

initial conditions is strongest for the rational α = k/s with small values

of s. As the perturbation grows with ε, the breakdown associated with

each such rational α broadens, so that progressive overlap occurs, leading

eventually to complete breakdown of the torus structure.

Let us examine the twist map (D.17) for three neighbouring circles

C−, C, C+ corresponding respectively to α− < k/s, α = k/s, α+ > k/s

(say), with k, s positive integers and with α−, α+ irrational. (We have here

chosen to take α to be an increasing function of radius r.)

Then applying the twist map T successively s times we find that the

effect of T (s) (see Fig. D.8) is to map the circles to themselves, with C

invariant and with C−, C+ twisted ‘rigidly’ clockwise, anticlockwise respec-

tively — this is so since 2πsα− < 2πk and 2πsα+ > 2πk. All points of C

are fixed under the iterated mapping T (s).

Since α−, α+ are irrational the circles C−, C+ are only mildly distorted

when we apply the map Tε successively s times instead — i.e. when we

iterate to consider the effect of T
(s)
ε . However, the inner and outer cir-

cles C−, C+ are still twisted clockwise, anticlockwise respectively — see

Fig. D.9.
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O
C

C

C

−

+

Invariant circles under
the twist map

Fig. D.8
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Q

H

H

H

E

E

E

T   C(s)
ε

C
C

+

T   C(s)
ε −

The action of the
perturbed twist map

Fig. D.9

Moving outwards radially from O in any direction we can, by continuity,

find a point on that radius arm which undergoes no net twist when the

iterated map T
(s)
ε is applied — P is mapped only radially (to Q) by this

process. By considering all possible radius arms we construct the closed

curve C consisting of all such points P which are mapped only radially by

T
(s)
ε — to C̄.

For the map Tε to model a section of a Hamiltonian dynamical system

(as, of course, does T itself) the map Tε — and hence T
(s)
ε — must be one

of equal-area, as reflected in §14.2.
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Since the areas contained within the curves C and C̄ must be equal,

there is in general an even number of intersections of these curves, which

correspond, of course, to fixed points of the iterated map T
(s)
ε . These

points are all that remains fixed from the original invariant circle C of the

unperturbed iterated map T (s). We now note that the fixed points are of

alternating type as we move around C (or C̄) — see Fig. D.10, where the

iterated mapping sense of flow is indicated.

(a) Elliptic point (E)  stable (b) Hyperbolic point (H)  unstable

Fig. D.10

There are evidently in all 2ns such fixed points of the iterated map T
(s)
ε ,

where n is a positive integer (usually 1).

The statement of existence of these fixed points, of their multiplicity

and their alternating stability is a result known as the Poincaré–Birkhoff

Theorem (1927).

It turns out that the elliptic fixed points E are themselves surrounded

(at higher scales) by elliptic and hyperbolic fixed points corresponding to

even higher-order frequency resonances.

For the hyperbolic fixed points H the unstable and stable manifolds

(q.v. also in §C.2) for neighbouring such points in the same family cross to

form what are called homoclinic intersections . The resulting instability at

all scales leads inevitably to sensitivity to initial conditions, in that trajec-

tories of the system have to twist and turn, forming a homoclinic tangle,

in order not to self -intersect, while maintaining the equal-area property of

the return map. This results in the stretching, squeezing and folding asso-

ciated with the Smale horseshoe referred to in §D.2 and this forces a dense

interweaving of ordered and chaotic motions within Hamiltonian systems

(Fig. D.11). Recognition by Poincaré of the existence of such tangles was

the first mathematical realization of the presence of what we now call chaos.
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KAM torus

KAM torus

Hyperbolic point H

Elliptic point E

Schematic chaotic
breakdown

Fig. D.11

An example of a map in which some of the breakdown to chaos in a

Poincaré section is apparent is that for the oval billiard map (Fig. 14.13).

For further exploration of breakdown to chaos under parameter change,

see Problem 13.

Problems

1. For the logistic map (D.6) with r non-negative:

(a) Show that there is a point attractor for 0 ≤ r < 3.

(b) Show that there is a two-cycle attractor for 3 < r < 1 +
√

6.

(c) Show that a, b, s can be found such that yn satisfies the logistic map

with parameter s (�= r) and xn = a+ byn.

(d) Hence determine the principal period-doubling bifurcation points for

the logistic map on the range −2 ≤ r ≤ 4.

2. Show that the map yn+1 = 1− ay2
n is just the logistic map (D.6) for xn

with xn, yn related linearly by yn = α+ βxn and a = 1
4r(r− 2). [This is

an example of the fact that all quadratic maps yn+1 = A + Byn + Cy2
n

are essentially just the logistic map, in that (D.6) can be obtained by a

suitably chosen linear relation between yn and xn.]

3. *Allowing r and xn to be complex in the logistic map (D.6), find regions

of the complex r plane for which the map has (a) a point attractor, (b)

a 2-cycle attractor. (c) Sketch the corresponding regions when these

results are expressed in terms of the complex a plane for the yn map of

Problem 2.
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4. The tent map

xn+1 =

{

2xn, (0 ≤ xn ≤ 1
2 )

2(1 − xn), (1
2 < xn ≤ 1)

has unstable fixed points. Show that this map exhibits extreme sen-

sitivity to initial conditions, in that an uncertainty ε0 in x0 is rapidly

magnified. Estimate the number of iterations after which the range of

uncertainty in the iterates is the complete interval [0, 1].

5. For the cubic map xn+1 = axn − x3
n, where a is real, show that, when

|a| < 1, there is an asymptotically stable fixed point X = 0 and that,

when 1 < a < 2 there are two such fixed points at X = ±
√
a− 1. What

happens when a becomes > 2?

6. Explore the one-dimensional maps of Problems 1–5 using a pro-

grammable calculator or (better) a computer. Further interesting ex-

amples are xn+1 = exp[a(1 − xn)], xn+1 = a sinxn.

7. For the Hénon map (D.15) show that:

(a) when − 1
4 (1 − b)2 < a < 3

4 (1 − b)2 there are two real fixed points,

one of which is asymptotically stable,

(b) *when 3
4 (1−b)2 < a < (1−b)2 + 1

4 (1+b)2 there is an asymptotically

stable 2-cycle.

[Hint : Since M =

(

−2aX 1

b 0

)

the eigenvalues of M are λ1, λ2 with

λ1λ2 = −b, λ1 + λ2 = −2aX . To determine stability, it is useful to

consider a sketch of the function f(λ) ≡ b/λ − λ and look for points

where f(λ) = 2aX in order to find (a, b) such that both the eigenvalues

satisfy |λi| < 1.]

8. *Show that a small circle of radius ε centred at any (X,Y ) becomes a

small ellipse under a single iteration of the Hénon map (D.15). Explain

how the semi-axes of the ellipse are related to Lyapunov exponents λ1, λ2

and show that λ1 + λ2 = ln |b| with λ1 > 0 > λ2, implying simultaneous

‘stretch’ and ‘squeeze’.

9. *The Lozi map is (D.10) with F (x, y) = 1+y−a|x|, G(x, y) = bx, where

a, b are real parameters.

(a) When |b| < 1 and |a| < 1− b, show that there is one asymptotically

stable fixed point.

(b) Find the 2-cycle when |b| < 1 and a > 1 − b and determine its

stability.

10. Explore the two-dimensional maps of Problems 7–9 using a computer.
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11. By calculating Lyapunov exponents examine sensitivity to initial condi-

tions of the equal-area maps of the unit square (0 ≤ x, y ≤ 1):

(a) Arnold’s cat map xn+1 = xn + yn, yn+1 = xn + 2yn (each modulo

1).

(b) The baker’s transformation

(xn+1, yn+1) =

{

(2xn,
1
2yn) (0 ≤ xn <

1
2 ),

(2xn − 1, 1
2 (yn + 1)) (1

2 ≤ xn ≤ 1).

12. Consider a system of two degrees of freedom with two natural frequencies

ω1, ω2 in the light of the discussion of periodicity and degeneracy in

§§14.1,14.6 and the real ratio ω1/ω2. Show that for numbers on the real

line:

(a) between any two irrationals we can certainly find a rational;

(b) between any two rationals we can certainly find an irrational.

(Note that, despite (a), there are vastly more irrationals than rationals

— unlike the former the latter are ‘countable’, so that the rationals are

‘scanty, but dense’. This emphasizes that for most systems periodic-

ity (closure) is relatively rare, although it is still the case that for any

irrational ω1/ω2 there are rationals arbitrarily close by.)

13. *As an exercise on near-integrable systems explore the ‘standard map’

(Chirikov–Taylor) analytically/computationally:

In+1 = In +K sinφn,

φn+1 = φn + In+1.

(Note: This equal-area map models the twist around a Poincaré section

by the dynamics (as in §14.2 and in more detail in §D.3), when the

integrable case (K = 0) is expressed in action/angle variables (I, φ). As

K increases there appear resonance zones, periodic orbits and bands of

chaos as tori I = constant undergo progressive breakdown. See Chirikov,

Physics Reports, 52, 263–379, 1979.)
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Answers to Problems

CHAPTER 1

1. mA/mB = 3; 3v/4.

2. m1/m2 = r2/r1.

3. 2mr̈ = F = F 21 + F 31; r = (m2r2 +m3r3)/(m2 +m3).

4. 0.12m.

5. r′
ij = rij , p′

i = pi −miv, F ′
ij = F ij .

6. 400N, 300N.

7. arcsin 0.135 = 7.76◦ E of N; 60.6min; 130km, 8.62◦ W of S.

8. 1.2m; (±0.4, 0.6,−1.2), (0,−0.9,−1.2); 7N, 7 N, 10N.

10. (2.2 × 10−3)◦ = 7.9′′.

CHAPTER 2

1. (x in m, t in s) x = −3 cos 2t+ 4 sin 2t = 5 cos(2t− 2.214) =

Re[(−3 − 4i)e2it]; t = 0.322 s, 1.107 s.

2. z = −(mg/k)(1 − cosωt), ω =
√

k/m.

3. 0.447 s, 14.2mm.

4. 15.7◦ s−1, θ = 5◦ cosπt− 8.66◦ sinπt = 10◦ cos(πt+ π/3).

5. V = −GMm/x;
√

2GM(R−1 − a−1); 8 kms−1.

6. V = 1
4cx

4;
√

c/2ma2; x = ±a.
7. V = 1

2kx
2 − c lnx; x =

√

c/k; ω =
√

2k/m.

8. F = −mk, F = mk; oscillation; 2
√

2a/k.

9. F = kx, |x| < a; F = 0, |x| > a; oscillation between two turning

points if k < 0 and E < 0, 1 turning point if k > 0 and E < 1
2ka

2,

otherwise no turning points.

10. Earlier by (2a/v) − (2/ω) arctan(ωa/v).

11. (a) no turning points, (b) 1 turning point, (c) 1 or 2 turning points.

445
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12. x = −a; 2π
√

2ma3/c; (a) |v| <
√

c/ma, (b) v < −
√

c/ma or
√

c/ma < v <
√

2c/ma, (c) v >
√

2c/ma.

13. z = (g/γ2)(1 − e−γt) − gt/γ; ż → −g/γ.
14. 8.05 s, 202m.

15.
√
gk arctan(

√

k/g u), (1/2k) ln(1 + ku2/g).

16.
√

g/k, (gk)−1/2 ln(ekh −
√

e2kh − 1).

17. ±
√

2(g/l)(cos θ − cos θ0); 2π
√

l/g; θ = θ0 cos(
√

g/l t).

18. For θ = π − α, α̈ = (g/l)α; 0.95 s; 2π s−1.

19.
√

c/m(a2 − x2); x = a tanh(
√

c/mat).

20. x = a; π/ω;
√

a2 + v2/4ω2 ± v/2ω.

21. z = (mg/k)[−1 + (1 + γt)e−γt], γ =
√

k/m; 16mm.

22. 1.006 s; 5.33◦, 1.17◦.
23. x = (v/ω)e−γt sinωt→ vte−γt.
25. ω1 =

√

ω2
0 + γ2 ± γ.

26. Ē = 1
4ma

2
1(ω

2
1 + ω2

0), W = 2πmγω1a
2
1.

27. 3; final velocities: −6m s−1, 7m s−1, 10m s−1; T = 364.5J.

28. vn = en
√

2gh.

29. an = c/mω2n(1 + n2).

31. τ = 1.017 × 2π
√

l/g.

32. G(t) = (e−γ−t − e−γ+t)/m(γ+ − γ−), t > 0;

x = c
m

[

1
γ+−γ−

(

1
γ2
−

e−γ−t − 1
γ2
+

e−γ+t
)

− 2γ
ω4

0

+ t
ω2

0

]

.

CHAPTER 3

1. (a) V = − 1
2ax

2 − ayz − bxy2 − 1
3bz

3, (c) V = −ar2 sin θ sinϕ,

(f) V = − 1
2 (a · r)2.

2. 1
2a+ b.

3. (i) 0, (ii) 1
2a.

4. (a) πa2, F not conservative; (b) 0, F may be conservative.

5. F = c[3(k · r)r − r2k]/r5; Fr = 2c cos θ/r3, Fθ = c sin θ/r3, Fϕ = 0.

6. 382m, 883m; 30◦; 17.7 s, 10.2 s.

7. z = x tanα− gx2/2v2 cos2 α; α = π/4 + β/2.

8. z = wx/u− gx2/2u2 − γgx3/3u3; 42.3◦, 823m.

9. 6.89 km, 7.35 km, 7.18 km.

10. 4ω; mω3l4/r3; ∆T = 3
2mω

2l2.

11. v/2, v2 = 4ka2/3m; 4ka/3m, −5ka/6m.

12. θ̈ = 2F/ma− (g/a) sin θ, θ̇2 = 4Fθ/ma− (2g/a)(1 − cos θ);

F0 = 0.362mg.
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13. θ̈ = (1 − sin θ)g/3a, θ̇2 = (θ − 1 + cos θ)2g/3a; F = mg(1 + 2 sin θ)/6;

θ = 7π/6; thereafter the two bodies move independently until string

tautens.

14. u̇ = (M +m)g sinα/(M +m sin2 α),

v̇ = mg sinα cosα/(M +m sin2 α); α = arcsin(2/3) = 41.8◦.
15. z = c−2 sin2 θ, x = c−2(θ − 1

2 sin 2θ).

17. cot θ = cot θ0 cos(ϕ− ϕ0), (θ0, ϕ0 constants).

18. m
4

[

ξ+η
ξ ξ̈ − 1

2η
(

ξ̇
ξ −

η̇
η

)2
]

= Fξ,
m
4

[

ξ+η
η η̈ − 1

2ξ
(

ξ̇
ξ −

η̇
η

)2
]

= Fη.

19. (a) and (b): r = k/(c+ g), θ = 0, unstable; (a) only: r = k/(c− g),

θ = π, stable.

20. T = 1
2m

∑

i h
2
i q̇

2
i , pi = mh2

i q̇i, ei · p = mhiq̇i.

21. r̈ = (ρ̈− ρϕ̇2)eρ + (ρϕ̈+ 2ρ̇ϕ̇)eϕ + z̈k = (r̈ − rθ̇2 − r sin2 θ ϕ̇2)er +

(rθ̈ + 2ṙθ̇ − r sin θ cos θ ϕ̇2)eθ + (r sin θ ϕ̈+ 2r cos θ θ̇ϕ̇+ 2ṙ sin θ ϕ̇)eϕ.

23. ∂er/∂θ = eθ, ∂eθ/∂θ = −er, ∂er/∂ϕ = eϕ sin θ, ∂eθ/∂ϕ = eϕ cos θ,

∂eϕ/∂ϕ = −(er sin θ + eθ cos θ), others zero.

24. mc2[(cosh2 λ− cos2 θ)λ̈+ 1
2 sinh 2λ(λ̇2 − θ̇2) + sin 2θ λ̇θ̇] = Fλ,

mc2[(cosh2 λ− cos2 θ)θ̈ − 1
2 sin 2θ(λ̇2 − θ̇2) + sinh 2λ λ̇θ̇] = Fθ.

25. y = λ+ a cosh[(x− b)/a], a, b, λ constants.

26. A circle, x2 + y2 − 2by = a2, b constant.

CHAPTER 4

1. 4.22 × 104 km.

2. 1.61 × 105 km, 0.176au = 2.64 × 107 km.

3. 11.9 yrs, 13.1 km s−1.

4. 5.46 yrs.

5. 38.6 km s−1, 7.4 km s−1.

6. 1.62m s−2, 2.38 km s−1; 25.8m s−2, 60.2 km s−1.

7. 84.4min, 108min, 173min.

8. 1.0× 1011MS (assuming that the mass distribution is spherical — this

is the mass inside the radius of the Sun’s orbit).

9.
√

k/ma; r2 = 1
2a

2(3 + 2 cosα±
√

5 + 4 cosα); r = 2a, a; r = a, 0.

10. U = J2/2mr2 + 1
2k(r − a)2; ω =

√

1/2ω0; ω
′ =

√

5/2ω0; 2.24 radial

oscillations per orbit.

11. (2/3π) yrs=77.5 days.

12. Ratio is 1.013, 2.33, 134.

13. 1/r2 = mE/J2 +
√

(mE/J2)2 −mk/J2 cos 2(θ − θ0).
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14. Hyperbola with origin at the centre.

15. 7.77days.

16. 8.8 kms−1, 5.7 km s−1; 97◦ ahead of Earth; 82◦ ahead of Jupiter.

17. 4.26RE, 18.4◦; 38.3 km s−1, 4.87 yrs.

19. GMm/2a,−GMm/a.

20. x = a(e− coshψ), y = b sinhψ; r = a(e coshψ − 1),

t = (abm/J)(e sinhψ − ψ).

21. 5.7 kms−1, opposite to Jupiter’s orbital motion; 5.7 km s−1;

3.9 × 106 km = 56RJ, 23RJ.

22. 14.3 km s−1 at 23.5◦ to Jupiter’s orbital direction; 9.2au, 16.2 yrs;

3.6au.

23. 14.3 km s−1, in plane normal to Jupiter’s orbit, at 23.5◦ to orbital

direction; 7.8au, 16.2 yrs; 2.5au.

24. cos θ = (1 − l/R)/
√

1 − l/a; 60◦, 6.45 km s−1.

25. With n2 = |1 +mk/J2|, b2 = J2/2m|E|:
J2 +mk > 0, E > 0 : r cosn(θ − θ0) = b;

J2 +mk = 0, E > 0 : r(θ − θ0) = ±b;
J2 +mk < 0, E > 0 : r sinhn(θ − θ0) = ±b;
J2 +mk < 0, E = 0 : re±nθ = r0;

J2 +mk < 0, E < 0 : r coshn(θ − θ0) = b.

26. dσ/dΩ = kπ2(π − θ)/mv2θ2(2π − θ)2 sin θ.

27. ω =
√

(−ka2 − c)/ma5, ω′ =
√

(−ka2 + c)/ma5.

28. 0.123m, 2.44m.

29. 1.13 × 10−11 m, 8.1 × 103 s−1.

30. ṙ = eJ sin θ/ml, r̈ = eJ2 cos θ/m2lr2, rad. accel. = −J2/m2lr2.

CHAPTER 5

1. 2.2m s−2 = 0.086 gJ, 5.1 × 10−3 m s−2 = 1.9 × 10−5 gS.

2. 15.3 s−1.

3. 0.20mm, 78mm.

4. 465m s−1; (a) 542m s−1, (b) 187m s−1, (c) 743m s−1.

5. (a) 99.88 twt, (b) 100.29 twt, (c) 99.46 t wt.

6. 2.53 × 10−3 N to south, 1.46 × 10−3 N up.

7. 0.013mbar km−1.

8. 0.155◦.
9. 12.0 s; 100kgwt, 20 kgwt; decreasing weight and a Coriolis force of

79N.

10. 47.4mm.
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11. F = mr̈ = q(E + v ∧ B) with E = Ek, B = Bk;

x = (mv/qB) sin(qBt/m), y = (mv/qB)[cos(qBt/m) − 1],

z = qEt2/2m; z = (2mE/qa2B2)y2; depends only on m/q.

12. l = πmv/qB; E = 2 × 106 V m−1, l = 0.089m.

13. ∼ 105 T, 1.76 × 1011 s−1.

14. 5.1 × 1016 s−1, −3.3 × 1016 s−1.

15. 124m.

18. mr̈ = F −ma.

19.

⎡

⎣

x∗

y∗

z∗

⎤

⎦ =

⎡

⎣

cosωt − sinωt 0

sinωt cosωt 0

0 0 1

⎤

⎦

⎡

⎣

x

y

z

⎤

⎦.

20. T = 1
2m(ṙ + ω ∧ r)2.

CHAPTER 6

1. φ = (q/2πε0a
2)(

√
a2 + z2 − |z|), E = (qk/2πε0a

2)
(

z
|z| − z√

a2+z2

)

;

E → k(σ/2ε0)(z/|z|).
2. Q = − 1

2qa
2; for θ = 0, φ ≈ (q/4πε0)(1/z − a2/4z3).

3. When d is in same direction as E.

4. E = (3d · rr − r2d)/4πε0r
5, V = (r2d · d′ − 3d · r d′ · r)/4πε0r

5;

(a) F = −F ′ = −6k(dd′/4πε0r4), G = G′ = 0;

(b) F = −F ′ = 3k(dd′/4πε0r4), G = G′ = 0;

(c) F = −F ′ = 3i(dd′/4πε0r4), G = −j(dd′/4πε0r3), G′ = 2G;

(d) F = F ′ = 0, G = −G′ = −k(dd′/4πε0r3).
5. V = 1

2

∑

i�=j(qiqj/4πε0rij).
6. 3

5 (q2/4πε0a);
1
2 (q2/4πε0a).

7. 4.5 × 105 C, 0.28 J m−2.

8. 8πσ0a
4/5, 2πσ2

0a
3/25ε0.

9. 3qa2(x2 − y2)/4πε0r
5,

E = (3qa2/4πε0r
7)
(

(3x2−7y2−2z2)x, (7x2−3y2+2z2)y, 5(x2−y2)z
)

.

10. −Gm/r + (Gma2/r3)(3 cos2 θ − 1);

−Gm/a+ (Gm/4a3)(2z2 − x2 − y2), g = (Gm/2a3)(x, y,−2z).

11. −6Gm/r + (7Gma4/4r5)[3 − 5(x4 + y4 + z4)/r4].

12. −
√

(8πGρ0a3/3)(r−1 − a−1); 6.7 × 106 yrs; 14.9mins, 29.5mins.

13. 4.0 × 1040 J.

14. 1/9.5.

15. 3.0.

16. 79m; 78RE.

17. (ME/MM)2(RM/RE)4 = 35; 2.8 km.
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18. 12.5m.

19. (8π/5)ρ0d0r
4; 1.13.

22. qµ2e−µr/4πε0r; −q.
23. 2πGρ2R2/3 = 1.7 × 1011 Pa=1.7Mbar.

24. Φ = −kρ; a =
√

πk/4G.

25. −1.43× 10−6 s−1; 51 days.

26. 17.9 yrs (should be 18.6 yrs).

CHAPTER 7

1. 258 days.

2. 7.4 × 105 km from centre of Sun, i.e., just outside the Sun; 0.28◦.
3. 0.00125M0; m1 ≥ 0.00125M0.

4. z1 = l +m1vt/M − 1
2gt

2 + (m2v/Mω) sinωt,

z2 = m1vt/M − 1
2gt

2 − (m1v/Mω) sinωt, with ω =
√

k/µ and v < lω.

5. m1/m2 = 1.

6. 12; 0.071.

7. 62.7◦, 55.0◦, 640keV.

8. T ∗
1 = m2Q/M,T ∗

2 = m1Q/M ; 3.2MeV, 0.8MeV.

9. ln 106/ ln 2 ≈ 20.

10. 90◦; 45◦, 45◦.
11. 2.41b; (0.65v, 0.15v, 0), (0.35v,−0.15v, 0).

12. T ∗/T = m2/M ; → 1 or 0.

13. 3 × 10−6,+450km, +2.4min.

15. a2 cos θ(1/ sin4 θ + 1/ cos4 θ), where a = e2/2πε0mv
2. (The second

term comes from recoiling target particles.)

16. 1.8 × 103 s−1, same for both.

17. 2mR̈ = 0, 1
2mr̈ = qE − (q2/4πε0r

3)r; z = 2qE/mω2.

CHAPTER 8

1. 0.99km s−1, 164 kg.

2. (2.44 + 1.48 =) 3.91km s−1, 143 kg.

3. 4.74 km s−1.

4. 3 stages, 1.48 × 105 kg.

5. 14.2 km s−1, 2.06 km s−1, 2.8 × 106 kg.

6. 1
2M0u

2(1 − e−v/u).
7. 44.6 km, 33.9 km.

8. 10.3 km s−1, (3.07 − 0.07 =) 3.0 km s−1; 6.13 t.

9. If u1 = (v, 0): (−1, 0)v/5, (3,±√
3)v/5, (|v2| = 2

√
3v/5).
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10. −ρAv2, A = πr2; because scattering is isotropic.

11. δa = −2(I/m)
√

(1 + e)a3/GM(1 − e).

12. da/dt = dl/dt = −2ρAva/m.

13. −20.9 s, −16.9km; −3.37 s, −2.78km.

14. (a) 6.2 h, 1.85 d; (b) 3.15d, 40.4 d.

CHAPTER 9

1. 4
√

2a/3, (3
√

2g/4a)1/2.

2. 64 r.p.m., 5.3 × 10−6 J from work done by insect; dissipated to heat.

3. (a) E,P ; (b) J about leading edge; (c) E; 3v/8a, 5/8;

[16(
√

2 − 1)ga/3]1/2.

4. (a) 1.011 s, (b) 1.031 s.

5. 4a/3; 3bX/4Ma2, 3bX/4a; b = 4a/3.

6. (a) 3Mg cosϕ; (b) (Mg/8)(−9 sin2ϕ, 11 + 9 cos 2ϕ),

(3Mg/2)(− sin2ϕ, 1 + cos 2ϕ).

7. 9 × 10−6 kgm2, 16 × 10−6 kg m2, 25 × 10−6 kgm2;

(1.08, 1.44, 0)× 10−4 kgm2 s−1; 6.3 × 10−3 N.

8. (a) (8, 8, 2)Ma2/3; (b) (11, 11, 2)Ma2/3.

9. 2M(a5 − b5)/5(a3 − b3).

10. 25.6 s, 1.097× 103 J.

11. 60◦.
12. I1 = I2 = 3M(a2 + 4h2)/20, I3 = 3Ma2/10; 1/2; Z = 3h/4,

I∗1 = I∗2 = 51Ma2/320, I∗3 = I3.

13. 1.55 s.

14. 112 s.

15. 0.244 s−1.

17. 8.83m.

18. (a) 2.64Hz (Ω = 16.6 s−1); (b) 3.44Hz (Ω = 21.6 s−1).

20. 2.50 × 10−12 s−1 = 16.3′′ yr−1.

21. 22.3 s.

CHAPTER 10

1. ±g/4.

2.
√

4mgl/(M + 2m)a2.

3. Mmg/(M + 2m).

4. M2mg/k(M + 2m)2.

6. g/7, 3g/7,−5g/7.

7. 24mg/7, 12mg/7.
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8. 62.62 s−1, 4.347 s−1 (cf. 4.065 s−1); 371.5 s−1 (3548 r.p.m.).

9. (M +m sin2 θ)lθ̈ +mlθ̇2 cos θ sin θ + (M +m)g sin θ = 0; 1.40 s−1.

10. I1ϕ̈ = I3ω3Ω sinλ cosϕ− I1Ω
2 sin2 λ sinϕ cosϕ; (I1/I3)Ω sinλ; east

and west.

11. I1, I3 are replaced by I∗1 < I1, I
∗
3 = I3; large Ω is bigger, small Ω is

slightly smaller.

12. arcsin(1/
√

3) = 35.3◦.
14. (a) as at t = 0 except that for l/2 − ct < x < l/2 + ct, y = a− 2act/l;

(b) y = 0; (c) y(x, l/c) = −y(x, 0).

15. ẍ− 2ωẏ − ω2x = −GM1(x+ a1)/r
3
1 −GM2(x− a2)/r

3
2,

ÿ + 2ωẋ− ω2y = −GM1y/r
3
1 −GM2y/r

3
2 , with

r21 = (x+ a1)
2 + y2, r22 = (x− a2)

2 + y2, ω2 = GM/a3.

CHAPTER 11

1. x = a(cosω1t cosω2t+ 1
2

√
2 sinω1t sinω2t),

y = a(2 cosω1t cosω2t+ 3
2

√
2 sinω1t sinω2t),

where ω1,2 = 1
2 (ω+ ± ω−) and ω± =

√

(2 ±√
2)g/l.

2. ω2 = g/l, g/l+ k/M + k/m; AX/Ax = 1,−m/M ; 2Ma/(M +m); no.

3. x0 = 2mg/k, y0 = 3mg/k; ω2 = (3 ±√
5)k/2m.

4. ω2 = ω2
0 , ω

2
0 + ω2

s , ω
2
0 + 3ω2

s ;

Ax : Ay : Az = 1 : 1 : 1, 1 : 0 : −1, 1 : −2 : 1.

5. 2a/3, a.

6. (a) ω2 = k/m, 3k/m; (b) ω2 = (1 − a/l)k/m, 3(1− a/l)k/m.

7. ω2 = (M +m)g/ma, g/2a.

8. θ = (ϕ0/10)(cos 2πt− cos 3πt) (t in s); ϕ0/5, t = 1 s.

9. 1.0025 s, 0.09975 s; 0.5025mm.

10. (0.401 sin6.27t− 0.0399 sin63.0t)mm, (t in s).

11. φ = (q/4πε0)[14/a+ (4x2 + y2)/2a3]; ω2
1 = q2/4πε0a

3m, ω2
2 = 4ω2

1 .

12. ω2 = g/l, g/l, 3g/l.

13. A1,2 = (F/
√

2m)(ω2
1,2 − ω2 + 2iγ1,2ω), with ω2

1 = ω2
0 , ω

2
2 = ω2

0 + 2ω2
s ,

γ1 = α/2m, γ2 = (α+ 2β)/2m; α >
√

3k/ω0.

14. q2r = 0, q2r+1 = (−1)r4
√

2la/π2(2r + 1)2.

CHAPTER 12

1. ω2 = g cosα/r sin2 α; arcsin(1/
√

3) = 35.3◦.
2. Ω2 = ω2 − g2/l2ω2.

3. H = (px − py)
2/6m+ p2

y/2m+ 1
2ky

2 −mgy;

y = mg(1 − cosωt)/k, x = x0 − y/4, ω2 = 4k/3m.
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4. J2 = p2
θ + p2

ϕ/ sin2 θ.

5. H =
p2
θ

2ml2
+

(lpx − pθ cos θ)2

2(M +m sin2 θ)l2
+mgl(1 − cos θ).

6. H =
p2
X + p2

Y

2M
+

p2
θ

2(I∗1 +MR2 sin2 θ)
+

(pϕ − pψ cos θ)2

2I∗1 sin2 θ

+
p2
ψ

2I∗3
+MgR cos θ; ω2

3,min = 4I∗1MgR/I2
3 , reduced by a factor I∗1/I1.

7. (pϕ − pψz)
2 − 2I1(1 − z2)(E −Mgrz − p2

ψ/2I3) = 0.

8. H = (p − qA)2/2m+ qφ.

9. H =
p2
ρ

2m
+

p2
ϕ

2mρ2
− qq′

4πε0ρ
+
q2B2ρ2

2m
.

10.
√

q′m/πε0qB2;
√

3ωL.

11. 0 < b < a, a2/4b.

12. M1/M2 >
1
2 (25 +

√
621) = 24.96.

13. Ω2 = −p2 = 1
2ω

2{1 ±
√

1 − 27M1M2/(M1 +M2)2}; 11.90 yrs,

147.4 yrs.

14. ϕ̇ =
J

mρ2
;
∂U

∂ρ
= − J2

mρ3
− qJBz

mρ
,
∂U

∂z
=
qJBρ
mρ

.

CHAPTER 13

1. (a) f̄ = k2/4σ; equilibria x± = (k ±
√

k2 − 4fσ)/2σ, x+ is

asymptotically stable. (b) ẋ ≤ f̄ − f < 0 =⇒ t0 ≤ k/σ(f − f̄). In

practice, f̄ is not precisely known or constant.

2. Trajectories 1
2 θ̇

2 − (g/l) cos θ = constant (= g/l on separatrices).

4. ẋ = y, ẏ = −ω2
0x− µy. Critical point (0, 0) which is (i) asymptotically

stable spiral, (ii) (improper) asymptotically stable node, (iii) (inflected)

asymptotically stable node.

5. (0, 0) and (1, 0) are asymptotically stable nodes ; ( 1
2 , 0) is a saddle.

[Note that the nodes are local minima of U(x, y).]

6. f(x) = −c lnx+ dx has a single minimum and f → +∞ when x→ 0+

and when x→ +∞.

7. (0, 0) has λ1,2 = 1, 1
2 with eigenvectors (1, 0), (0, 1): unstable node;

(0, 2) has λ1,2 = −1,− 1
2 with (1, 3), (0, 1): asymptotically stable node;

(1, 0) has λ1,2 = −1,− 1
4 with (1, 0), (1,− 3

4 ): asymptotically stable

node; (1
2 ,

1
2 ) has λ1,2 = (−5 ±

√
57)/16 with (− 1

2 ,
1
2 + λi): saddle.

Nearly all initial conditions lead to extinction for one or other species

in Fig. 13.9 =⇒ no stable coexistence. Second set of parameters

=⇒ (0, 0): unstable node; (0, 3
2 ) and (1

2 , 0): saddles ; ( 1
4 , 1):
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asymptotically stable node; in this case there is asymptotically stable

coexistence.

8. M =

[

−c1 a2

a1 −c2

]

=⇒ λ2 + (c1 + c2)λ+ (c1c2 − a1a2) = 0. Then

c1c2 > a1a2 =⇒ λ1, λ2 real, negative: asymptotically stable node,

coexistence in first quadrant; and c1c2 < a1a2 =⇒ λ1, λ2 real,

opposite sign: saddle in third quadrant and trajectories run away

→ +∞.

9. Critical points at (0, 0),
[

µ(R−1)
(µR+a) ,

a(R−1)
R(a+µ)

]

. R < 1: asymptotically

stable node, saddle. R > 1: saddle, asymptotically stable node. Disease

maintains itself only when R > 1.

10. At (0, 0), λ1,2 = (ε±
√
ε2 − 4)/2; unstable spiral (ε < 2) or node

(ε ≥ 2).

11. At (0, 0), λ1,2 = αβ ± i, so we have an asymptotically stable spiral

(β < 0), unstable spiral (β > 0) or centre (β = 0). In polars, θ̇ = 1

and ṙ = αr(β − r2); for β > 0, r →
√
β as t and θ → ∞; when β < 0,

r → 0.

12. (a) J1J̇1 + J2J̇2 + J3J̇3 = 0; then integrate to get |J | = constant. (b)

(±J, 0, 0), (0, 0,±J) are centres on the sphere; (0,±J, 0) are saddles.

(c) J̇3 = 0 =⇒ J3 = I3Ω. J1,2 satisfy J̈i + [(I1 − I3)/I1]
2Ω2Ji = 0.

(d) Critical point (0, 0, 0), with λ1,2,3 = −|µ|/I1,2,3 and eigenvectors

(1, 0, 0), (0, 1, 0), (0, 0, 1). As ω → 0, ω → rotation about axis with the

largest moment of inertia, I3.

13. (a) dN/dt ≡ 0 and dI/dS = İ/Ṡ = −1 + b/aS. (b) dI/dS = 0 when

S = b/a and d2I/dS2 = −b/aS2 < 0, so maximum. I = 0 at

S = S−, S+. (c) S0 = b/a+ δ, I0 = ε. Write S = b/a+ ξ and expand

=⇒ trajectory passes through (b/a− δ, ε). Since S0 can be made

arbitrarily close to S−, so S+ is arbitrarily close to b/a− δ and these

susceptibles escape infection.

I

SSS0

(S , I )

b/a

t

+ −

0 0
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14. For a critical point (X,Y, Z), the matrix M =

⎡

⎣

−σ σ 0

ρ− Z −1 −X
Y X −β

⎤

⎦.

(a) λ1 = −β < 0, λ2,3 = − 1
2 (σ + 1) ± 1

2

√

(σ + 1)2 − 4(1 − ρ)σ, so that

λ2,3 are real and are both negative only when 0 < ρ < 1.

(c) ρ = 1 =⇒ cubic becomes λ(λ+ β)(λ + σ + 1) = 0. If the cubic

has the form (λ+ µ)(λ2 + ν2) = 0 then µ = σ + β + 1, ν2 = β(σ + ρ),

µν2 = 2σβ(ρ− 1) =⇒ result for ρcrit. (d) Write ρ = 1 + ε (with σ, β

constant, ε small) and find changes in eigenvalues by putting

λ = λi + ξ(ε) and performing a linear analysis of the cubic in (b).

(e) Evidently RHS = 0 is an ellipsoid and the distance of (x, y, z)

from Ō ≡ (0, 0, ρ+ σ) decreases where RHS < 0, i.e., outside the

ellipsoid and so a fortiori outside any sphere centred at Ō which

contains it.

15. (b) For a critical point (X1, X2, Y ), the matrix

M =

⎡

⎣

−µ Y X2

Y −A −µ X1

−X2 −X1 0

⎤

⎦.

(c) ∇ · (ẋ) = −2µ < 0. (d) X2
1 +X2

2 + Ȳ 2 = C, where C > 0, is an

ellipsoid (oblate). Trajectories move towards smaller C values

whenever (X1, X2, Ȳ ) is below the paraboloid Ȳ = µ(X2
1 +X2

2 )/
√

2.

16. ∆x = ∆x0 cosωt+ (∆y0/ω) sinωt, ∆y = −ω∆x0 sinωt+ ∆y0 cosωt.

Each is bounded and so is
√

(∆x)2 + (∆y)2.

17. Trajectories in the xy-plane are parabolic arcs in x ≥ 0. The higher

the energy the longer the period of oscillation (between successive

bounces). Between bounces, ∆x = ∆x0 + ∆y0t, ∆y = ∆y0, so that
√

(∆x)2 + (∆y)2 ∼ κt for t increasing, and bounces don’t affect this

result.

18. Evidently, we have (1), ( 1
2 ,

1
2 ), (1

4 ,
1
2 ,

1
4 ), etc. in successive rows, i.e.,

(1
2 )n × (row of Pascal’s triangle). When n = 16, we have
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(1
2 )16[1,16,120,560,1820,4368,8008,11440, 12870,11440,8008,4368,

1820,560,120,16,1].

CHAPTER 14

1. Return trajectories have −|k|/R ≤ E < 0.

t0 =
√

2h3m/|k|
[

π/2 − arcsin
(√

R/h
)

+
√

(R/h)(1 −R/h)
]

→
√

h3m/2|k|π as R/h→ 0, i.e., Kepler’s third law for a flat ellipse,

major axis h in this limit.

2. Explicitly, [F,H ] = 0 in each case. In (c), the vector A may be

considered using Cartesians or polars. (Then the orientation of the

orbit may be specified using α = arctan(Ay/Ax) and

|A|2 = 1 − (2J2|E|/mk2), consistent with (4.30).)

3. H (≡ E) and pθ are constants of the motion. Steady r = r0 when

pθ = mr20Ω0 with Ω0 = ±
√

g/r0. Small oscillations r = r0 + ∆ =⇒
SHM for ∆ with frequency

√

3g/2r0.

4. ω =
√

g cosα/r0 sin2 α, rotation rate at r0. Small oscillations

r = r0 + ∆ =⇒ SHM for ∆ with frequency � ≡ √
3(ω sinα). Closure

for rational
√

3 sinα.

5. Effective potential p2
θ/2mr

2 − |k|/r =⇒ minimum −k2m/2p2
θ when

r = r0 = p2
θ/m|k|, circle; (r, pr) curves closed (around r = r0) when

E < 0, corresponding to (r, θ) ellipses; E ≥ 0 curves stretch to

r → ∞, (r, θ) hyperbolae, parabola. We always have closure for this

system — given E, Poincaré section is a single point on an (r, pr)

curve, a different point for each choice of θ section.

6. H ≡ E here. Action I = 2E
√

l/g =⇒ E = 1
2

√

g/l I, and frequency

ω = ∂H/∂I = 1
2

√

g/l.

7. Oscillation between x = ±[l+
√

2E/k]. Action

I = (2l/π)
√

2mE +E/Ω =⇒
√
E =

√

IΩ + β2 − β.

φ(x) = (∂/∂I)
∫ x

p dx with φ = ω(I)t + constant,

ω = Ω
√
E/(

√
E + β), T = 2π/ω. Small E =⇒ T → ∞ as E−1/2;

large E =⇒ T → 2π/Ω.

8. I = 1
2

√
mk[E/k −

√

λ/k] =⇒ E(I); φ(q) = (∂/∂I)
∫ q
p dq ≡ ωt+ β,

with ω = ∂E/∂I = 2
√

k/m. Evaluating φ(q) gives

q(t) =
[

E
k +

√
E2−λk
k sin(ωt+ β)

]1/2

. (Note. For the isotropic

oscillator there are two radial oscillations for each complete elliptical

trajectory.)
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9. Action I1 = (
√
−2mE/π)

∫ r2
r1

√

(r2 − r)(r − r1)(dr/r), where

r1 + r2 = −|k|/E and r1r2 = −I2
2/2mE =⇒ result. So E(I1, I2) and

ω1 = ∂E/∂I1 ≡ ω2 (see (14.18)).

10. Consider the lines from a bounce point to the foci and the angles they

make with the trajectory just before and just after the bounce.

Λ = [(x+ ae)py − pxy][(x− ae)py − pxy]. Change to λ, θ variables; H

from Chapter 3, Problem 24 using pλ = mc2(cosh2 λ− cos2 θ)λ̇,

pθ = mc2(cosh2 λ− cos2 θ)θ̇. Turning value for λ is when pλ = 0 =⇒
tangency condition.

11. (a) Motion within curve (E/mgµr) = 1 − (1/µ) cos θ (ellipse).

(b) µ = 1: bounding curve E = 2mgr sin2(θ/2); µ < 1: curve as in (a)

— hyperbola for E �= 0, two straight lines for E = 0.

12. Hamilton’s equations: ẋ = px + ωy, ṗx = ωpy − ω2x+ ∂U/∂x,

ẏ = py − ωx, ṗy = −ωpx − ω2y + ∂U/∂y and H = 1
2 (px + ωy)2+

1
2 (py − ωx)2 − U . System autonomous, H = constant; U ≥ C for

possible motion and for the Earth/Moon system the critical C is that

corresponding to the ‘equilibrium’ point between Earth and Moon.

13. Action I = E/ω, so E ∝ ω ∝ l−1/2. Maximum sideways displacement

= lθmax ∝ l1/4. Maximum acceleration |ω2lθmax| ∝ l−3/4.

14. Action I ∝ L
√
H and H ∝ v2 =⇒ v ∝ 1/L. Temperature ∝ 1/L2

=⇒ pressure ∝ 1/L5 =⇒ pressure ∝ (density)5/3.

15. Action I = (2m/3π)
√

2gq30 sinα and E = mgq0 sinα =⇒ result.

Frequency ω = 2π
√

g sinα/8q0. Evidently, I = constant =⇒
E ∝ (sinα)2/3, q0 ∝ (sinα)−1/3, period 2π/ω ∝ (sinα)−2/3. So

E2/E1 = 0.69, q02/q01 = 1.20, ω1/ω2 = 1.44.

16. Evidently E ∝ k2 and τ ∝ k−2. Since τ ∝
√

a3/|k| (see (4.31)),

a ∝ 1/|k| =⇒ k decreases, a increases. Since eccentricity

e =
√

1 + 2EI2
2/mk

2 (see (4.30)), e remains constant.

APPENDIX A

1. (a) 1, 2, 3; (b) (−3,−3, 3), (−3, 7, 8), (−6, 4, 11); (c) −15, 15;

(d) (−3, 3, 0), (−1, 3,−3); (e) as (d).

2. 164.2◦, 16.2◦.
4. (3x2 − yz,−xz,−xy); 6x.

5. (a) (1 − y2/x2, 2y/x, 0), (2x/y, 1− x2/y2, 0); (b) circles passing

through the origin with centres on x- or y-axes, respectively,

intersecting at right angles.
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8. a(∇ · b) + (b · ∇)a − b(∇ · a) − (a · ∇)b.

9. 2ωk.

11. (∇2A)ρ = ∇2(Aρ) −
1

ρ2

(

Aρ + 2
∂Aϕ
∂ϕ

)

,

(∇2A)ϕ = ∇2(Aϕ) − 1

ρ2

(

Aϕ − 2
∂Aρ
∂ϕ

)

, (∇2A)z = ∇2(Az).

12. Ar = Aθ = 0, Aϕ = µ0µ sin θ/4πr2;

Br = µ0µ cos θ/2πr3, Bθ = µ0µ sin θ/4πr3, Bϕ = 0;

A = (µ0/4πr
3)µ ∧ r; B = (µ0/4πr

5)(3µ · rr − r2µ).

13. B = (µ0I/4πr
3)ds ∧ r; F = (µ0II

′/4πr3)ds′ ∧ (ds ∧ r);

F + F ′ = (µ0II
′/4πr3)r ∧ (ds ∧ ds′) �= 0.

14. Ar = r−1 cos θ, Aθ = r−1 ln r sin θ, Aϕ = 0; r−2(1 + 2 ln r) cos θ;

(0, 0, 2r−2 sin θ).

15.

⎡

⎣

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

⎤

⎦.

17. Q =
∫∫∫

ρ(r′)(3r′r′ − r′21)d3r′.

APPENDIX B

1. Distances r1,2 are given by

r21,2 = (a cosψ ∓ ae)2 + (b sinψ)2 = a2(1 ∓ e cosψ)2.

2. Tangent vector is t = (−a sinψ, b cosψ), unit vectors from two foci are

n1,2 = (1 ∓ e cosψ)−1(cosψ ∓ e, (b/a) sinψ), scalar products are

t · n1,2 = ±ae sinψ.

APPENDIX C

1. (a) (0, 0), λ1,2 = − 5
2 ± 1

2

√
17, eigenvectors (1, 3 + λi), asymptotically

stable node.

(b) (0, 0), λ1,2 = 4, 1, eigenvectors (1, λi − 3), unstable node.

(c) (−1,−1), λ1,2 = −5 ±√
5, eigenvectors (−2, λi + 8), asymptotically

stable node;

(4, 4), λ1,2 = 5 ± i
√

55, unstable spiral.

(d) (0, 2), λ1,2 = −1 ± i, asymptotically stable spiral ;

(1, 0) λ1,2 = 1,−2, eigenvectors (−1, λi + 2), saddle (∴ unstable).

(e) (0, 2), λ1,2 = ±i2
√

6, centre (∴ stable);

(0,−2), λ1,2 = ±i2
√

6, centre (∴ stable);
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(1, 0), λ1,2 = −8, 3, eigenvectors (1, 0), (0, 1), resp., saddle

(∴ unstable);

(−1, 0), λ1,2 = 8,−3, eigenvectors (1, 0), (0, 1), resp., saddle

(∴ unstable).

(f) (0, nπ), n odd: λ1,2 = ±i, centres (∴ stable);

n even: λ1,2 = ±1, eigenvectors (1, 1), (1,−1), resp., saddles

(∴ unstable).

(g) (0, 0), λ1,2 = ±
√
ω2 − α, so ω2 > α, saddle (∴ unstable) and

ω2 < α, centre (∴ stable).

(Note: In each case, consider local sketches near the critical points and

how these build into the global phase portrait.)

2. ẋ = y, ẏ = x3 − x =⇒ (0, 0), centre, (±1, 0), saddles ;

(a) dy/dx = (x3 − x)/y =⇒ 1
2y

2 = 1
4x

4 − 1
2x

2 + c, i.e.,

y = ±
√

1
2x

4 − x2 + 2c; symmetry about x axis rules out spirals;

(b) separatrices given by c = 1
4 .

APPENDIX D

1. (b) d
dxF

(2)(x) = F ′(x)F ′(F (x)) =⇒ asymptotically stable when

|F ′(X1)F
′(X2)| < 1 =⇒ | − r2 + 2r + 4| < 1 =⇒ 3 < r < 1 +

√
6 (if

r ≥ 0).

(c) a = 1 − 1/r, b = 2/r − 1, s = 2 − r.

(d) Applying (c) to (a), (b), etc, yields asymptotically stable

points/cycles:

s = 2 − r Y r X

0 → 1 0 2 → 1 1 − 1/r

1 → 3 1 − 1/s 1 → −1 0

3 → 1 +
√

6
(

Y1(s), Y2(s)
)

−1 → 1 −√
6
(

X1(r), X2(r)
)

3.57 2∞ accum. −1.57 2∞ accum.

4 range limit −2 range limit

2. r = 1 ±
√

1 + 4a, β = −2α = r/a.

3. (a) X = 0 asymptotically stable in circle |r| < 1, X = 1 − 1/r

asymptotically stable in circle |2 − r| < 1.

(b) asymptotically stable 2-cycle when | − r2 + 2r + 4| < 1, or

|r − 1 −√
5|.|r − 1 +

√
5| < 1 (two disjoint ovals).
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Note: If we continue in this way, adding the regions of the complex r

plane in which there are cycles of any finite length we arrive at the

figure shown:

(c) In the complex a plane, the circles become a heart-shaped region

with a cusp at a = − 1
4 ; the 2-cycles yield a circle |a− 1| = 1

4 . The

entire set yields the Mandelbrot ‘signature’ (see Peitgen and Richter,

The Beauty of Fractals, Springer, 1986):

4. Fixed points at X = 0, X = 2
3 have |F ′(X)| = 2 =⇒ instability.

Uncertainty εn = ε02
n ≥ 1 when n ≥ ln(1/ε0)/ ln 2. Note: εn = ε02

n

=⇒ Lyapunov exponent λ = ln 2 > 0.

5. X = 0 asymptotically stable if |a| < 1. X = ±
√
a− 1 asymptotically

stable when |3 − 2a| < 1, or 1 < a < 2. At a = 2, there is

period-doubling on each branch, followed by a period-doubling cascade.
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7. (a) Both |λ1|, |λ2| < 1 =⇒ |b| < 1 and also |2aX | < 1 − b. (X−, Y−) is

always unstable; (X+, Y+) is asymptotically stable if a < 3
4 (1 − b)2.

(b) Nontrivial 2-cycle =⇒ Xi roots of

a2X2 − a(1 − b)X + (1− b)2 − a = 0, with Y = b(1− aX2)/(1− b); real

roots if a > 3
4 (1 − b)2. Eigenvalues λ of M1M2 satisfy

λ2 − (4a2X1X2 + 2b)λ+ b2 = 0 =⇒ for asymptotic stability |b| < 1

and |4(1 − b)2 − 4a+ 2b| < 1 + b2 =⇒ a < (1 − b)2 + 1
4 (1 + b)2 [using

an argument similar to that in the Hint].

8. xn = X + ξ, yn = Y + η =⇒ xn+1 = 1− aX2 + Y + ξ̄, yn+1 = bX + η̄,

with ξ̄ = −2aXξ + η, η̄ = bξ. Circle ξ2 + η2 = ε2 becomes

[ξ̄ + (2aX/b)η̄]2 + η̄2/b2 = ε2, ellipse with semi-axes ε/
√
µ1, ε/

√
µ2

where µ1µ2 = 1/b2, µ1 + µ2 = 1 + (1 + 4a2X2)/b2. Area of ellipse

= π|b|ε2 =⇒ area reduction. (1 − µ1)(1 − µ2) < 0 =⇒
0 < µ1 < 1 < µ2 (say) =⇒ Lyapunov exponents λ1 > 0 > λ2.

9. (a) Fixed points P1 = (1 + a− b)−1(1, b) if a > b− 1,

P2 = (1 − a− b)−1(1, b) if a > 1 − b. If |b| < 1 and |a| < 1 − b only P1

exists, λ− b/λ = −a =⇒ P1 asymptotically stable.

(b) For nontrivial 2-cycle Q1 = (X1, Y1) � Q2 = (X2, Y2), X1, X2 must

be of opposite sign. Hence X1,2 = (1 − b∓ a)/[a2 + (1 − b)2],

Y1,2 = bX2,1.

11. (a)

(

x

y

)

=

(

X + ξ

Y + η

)

=⇒
(

ξn+1

ηn+1

)

=

(

1 1

1 2

)(

ξn
ηn

)

=⇒ eigenvalues

µ1,2 = 3
2 ± 1

2

√
5 =⇒ Lyapunov exponents λ1,2 = lnµ1,2 = ± ln 2.618 =

±0.9624 — stretch and squeeze. See diagram:

(b) eigenvalues µ1 = 2, µ2 = 1
2 =⇒ λ1,2 = ± ln 2 = ±0.6931. See

diagram:
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12. (a) α, β distinct irrationals with β − α > ε > 0, then choose integer N

such that ε > 1/N ; mesh integer multiples of 1/N , at least one is

between α and β. (b) Since
√

2 is irrational, then e.g.,

(1 − 1/
√

2)(p1/q1) + (1/
√

2)(p2/q2) is irrational and lies between the

rationals p1/q1 and p2/q2.

13. We may take both θ and I to be 2π-periodic here. See diagram:
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of damped oscillation, 28
angular momentum, 54

about an axis, 54, 65
about centre of mass, 183
and Euler angles, 222
and Larmor effect, 121
as generator of rotation, 293,
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area-preserving map, 353
Aristotle, 3
arms race, 324
Arnold’s cat map, 443

asteroid, 98, 101, 164, 175

Trojan, 304

astronomical unit, 98

asymptotically stable point, 310, 314,
418, 419, 426

atmospheric drag, 45, 52, 194

atmospheric pressure, xv
atmospheric tides, 187
atomic spectrum, 84, 121
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strange, 334, 338
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autonomous system, 309, 415
general second-order, 313

axes
of orbit, 75, 76, 87, 88
rotation of, 383
unit vectors along, 383

axial vector, 55, 105, 386
axioms of Euclid, 1
axioms of mechanics, 11
axis of rotation, 105

instantaneous, 217, 224
axis of symmetry, 207

baker’s transformation, 443

basin of attraction, 334, 426
beam, colliding, 169
Bernoulli, 70

Bertrand’s theorem, 351
bicycle wheel, 124
bifurcation, 309, 428
billiard balls, 41
billiard systems, 363–366, 378

circular, 364
elliptical, 365, 378

oval, 366, 441
body cone, 224
Bohr orbit, 84, 121, 126

boost, 295, 298–300
bounce map, 364, 366

bouncing ball, 345

boundary conditions, 61
brachistochrone, 70

broken symmetry, 363
Brusselator, 328
butterfly effect, 339

calculus of variations, 59–62, 233
canonically conjugate pairs, 301
Cartesian co-ordinates, 4, 5, 382
catastrophe, 309
catenary, 72

cause and effect, 339
central conservative force, 8, 66,

73–98, 279, 283–284, 350, 357–359,
375

Hamiltonian for, 279
impulsive, 90
of varying strength, 371
potential energy of, 66

central force, 55–57
and angular momentum

conservation, 291
internal, 181, 189, 198

centre, 315, 420, 422
true, 422, 424

centre of charge, 137
centre of mass, 6, 138, 159, 177

equation of motion of, 159, 178,
218

centre-of-mass frame, 162–164
centrifugal force, 77, 112, 235, 249

potential energy of, 114, 141, 239
centripetal acceleration, 111
Chandler wobble, 224, 330
chaos, 294, 334, 337, 338, 347

routes to, 375
chaotic attractor, 334
characteristic equation, 259, 314
charge, 8

centre of, 137
total, 137

charge density, 134, 150, 397
charge-to-mass ratio, 130
charged particle in electromagnetic

field, 241–244, 302
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chemical oscillation, 327
circular billiard, 364
circular orbit, 78, 81, 410

velocity in, 83
clockwork universe, 339
closest approach distance, 79–80
co-ordinates

Cartesian, 4, 5, 382
curvilinear, 58, 398–400
elliptic, 72, 378

ignorable, 282–285
normal, 264–266
orthogonal, 58, 253–256, 398
parabolic, 71

polar, 57–59, 398–400
coefficient of restitution, 42
coins, 366
collision, 26, 37

elastic, 41, 165–173
hard-sphere, 90–94, 169, 172
inelastic, 42
multiple, 95
two-body, 11, 14, 39–42, 165–173

combat model, 322–323
comet, 89, 99

competing species, 318–322, 342

competitive exclusion principle, 321
complex amplitude, 25, 258

of forced oscillation, 31, 265
components, of vector, 382
composite body, 14, 178

force on, 178
mass of, 12, 178
position of, 5, 14, 178

compound pendulum, 200–202
cone, 207

moments of inertia, 227

particle on, 301

conics, 86, 409–413
Cartesian form, 409–412
polar form, 412–413

conservation law
in constrained system, 239
of angular momentum, 55, 65, 66,

74, 76, 182, 280, 283,
291–293, 296–297

of energy, 9, 18, 25–26, 40, 50, 74,
76, 188–190, 198, 280–282,
295

of momentum, 11, 39, 160, 166,
178, 296

conservation laws, 2, 76–78
and symmetries, 291–301, 347
for symmetric top, 284
in polar co-ordinates, 76

conservative force, 17–18, 49–51,
188–190
condition for, 50, 395
impulsive, 40
internal, 189
potential energy for, 18, 394

conservative system, 315–317
constraint equation, 231–232, 239

and Lagrange multiplier, 240
continuous dynamics, 307, 312
control parameters, 308
convection, 331
Coriolis acceleration, 111
Coriolis force, 112, 114–120, 125, 229,

249

Coulomb gauge, 397
Coulomb scattering, 79–80
Coulomb’s law, 8
coupled oscillators, 261–266
critical damping, 29, 46

critical line, 415
critical point, 311, 313, 415–424

isolated, 415
cross-section, 90–97, 168–173

differential, 93, 97, 169, 171, 172
total, 94, 170

cube, moments of inertia, 210
cubic map, 442

curl, 391
in polar co-ordinates, 400
of curl, 393
of gradient, 393
vanishing, 51, 394

current density, 397
current loop, 124
curvilinear co-ordinates, 58, 63,

398–400
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unit vectors for, 71

cycloid, 70, 376

cyclone, 119
cyclotron, 109
cyclotron frequency, 109, 304
cylinder, 207

moments of inertia, 210
cylindrical polars, 57–59, 65, 71,

398–400
kinetic energy in, 58
Lagrange’s equations in, 65

damped oscillator, 27–29, 274, 341

day, 105, 186
degeneracy, 350, 373
degrees of freedom, 232, 294
Delaunay, 373
denominators, small, 373
depression, 119
determinant, 258, 416
determinism, 339
diagonalization, 403–404
dice, 366
differential cross-section, 93

for Rutherford scattering, 97
hard-sphere, 93, 172
in CM frame, 171
in Lab frame, 169, 171

differentiation of vector, 388
dipole

electric, 131
magnetic, 124, 406

dipole moment, 132, 137
discrete dynamics, 307, 312
discrete map, 353
discrete systems, 425–441
disease, 343

divergence, 391
in polar co-ordinates, 399
of curl, 393

divergence of trajectories, 374
dot product, 384

of tensors, 401
double dot product, 406

double pendulum, 255–257, 260, 369
double star, 14, 174

dyadic, 401
dynamo, 334–336, 345

Earth, xv, 140–144, 163, 214
angular velocity of, xv, 105,

185–186
core of, 154, 336
escape velocity, 82
magnetic field of, 334
motion near rotating, 112–113
orbit of, xv, 88, 98, 100

precession of axis of, 214, 224
shape of, 113, 140–144, 214

Earth–Moon distance, xvi, 154, 163
Earth–Moon system, 163, 183–188,

215
eccentric anomaly, 101

eccentricity, 86
of Earth’s orbit, xv, 88

ecliptic, 215
effective potential energy, 77, 235

for central force, 283
for constrained system, 239
for inverse square law, 78, 80
for symmetric top, 285, 288, 302

eigenvalue equation, 258, 314, 403,
416

eigenvalues, of Jacobian matrix, 314
eigenvector, 258, 403
Einstein, 1, 3, 10, 192
elastic bouncer, 357, 371, 379

elastic collision, 41, 165–173
electric charge, 8
electric dipole, 131
electric field, 130, 150, 241, 397
electric quadrupole, 132
electromagnetic field, 9, 397–398

particle in, 110, 241–244, 282, 302

electromagnetic force, 9, 110, 235, 241
electron, xv, 84, 167
electrostatic force, 8, 14, 130
electrostatic potential, 129–131
elements, 3
ellipse, 75, 81, 87, 410, 412
ellipsoid, moments of inertia of, 210
elliptic co-ordinates, 72, 378
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elliptic orbit, 75, 86–87
elliptic point, 420, 440
elliptical billiard, 365, 378

energy, 25–26
and time translation symmetry, 295
conservation of, 9, 18, 25–26, 40,

50, 74, 76, 188–190, 198,
280–282, 291

kinetic, 17, 49, 161, 162, 188
lost in inelastic collision, 42
potential, 18, 50, 161, 190, 394
total, 18, 50, 280
transferred in elastic collision, 166

energy levels of hydrogen atom, 84
entropy, 433
equal-area map, 437
equations of motion

for relative motion, 160
in electromagnetic field, 242, 250

of centre of mass, 159, 178, 218
of rigid body, 199, 218
of small oscillations, 256–257

equilibrium, 253, 311
condition for, 256
hydrostatic, 155

motion near, 20–25, 253–271
of rigid body, 198
solution, 313
stability of, 22, 259

equipotential surface, 132, 141, 142,
147

equivalence principle, 10, 130
equivalent simple pendulum, 201,

202, 226

ergodic behaviour, 291
ergodic trajectory, 350
escape velocity, 82–83, 99

from Earth, xv, 82
Euclid’s axioms, 1
Euclidean geometry, 2
Euler angles, 221–223, 231
Euler–Lagrange equations, 61, 62
external forces, 13, 177
external potential energy, 189, 191,

198
extinction, 321

Feigenbaum, 428
Feigenbaum number, 429
field, 390

electric, 130, 150, 241, 397
electromagnetic, 9, 241, 397–398
gravitational, 130, 151

field equations, 148–152, 397–398
figure of eight, 362
first-order convergence, 426
fish population, 312, 341

fixed point, 425, 434, 440
flow, 308
fluid, 114, 146

incompressible, 290, 392
velocity field in, 391

flux of particles, 90, 94, 169
flywheel, 227

focus, 86, 413, 419
of charged-particle beam, 126

of conic, 413, 414

folding, 353, 433, 436, 440
force, 6, 12

addition of, 6, 382
apparent, 112, 235
as basic quantity, 15

central, 55–57, 181, 189, 198
central conservative, 8, 66, 73–98,

279, 283–284, 357–359, 375

centrifugal, 77, 112, 114, 235
conservative, 17–18, 49–51,

188–190, 394, 395
Coriolis, 112, 114–120
definition of, 12
dissipative, 9, 26
electromagnetic, 9, 110, 235, 241
electrostatic, 8, 14, 130
external, 13, 177
generalized, 64, 234
gravitational, 8, 14, 130
impulsive, 37, 40, 202, 226

inverse square law, 78–84, 129, 358
Lorentz, 110, 241
magnetic, 108
on composite body, 178
periodic, 30–36, 265
saw-tooth, 47
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square-wave, 35
step-function, 39
three-body, 7
tidal, 147, 184
total, 6
two-body, 6, 177
work done by, 26, 49, 188, 234

forced oscillation, 30–39, 265–266
forced system, 232–233, 239, 280
Foucault’s pendulum, 117
four-cycle, 435
Fourier integral theorem, 36
Fourier series, 34, 271
fractal, 333, 373, 436
frame, 4

accelerated, 127, 145
centre-of-mass, 162–164
inertial, 3–4, 295
laboratory, 165
rotating, 105–125, 218, 239
transformation to moving, 14,

298–300
free motion of rigid body, 219,

223–225
freely falling body, 115–117, 127

frequency, 23
angular, 25
cyclotron, 109
fundamental, 270
Larmor, 121
of normal mode, 350

friction, 9

Galaxy, 99

Galilean transformation, 295–301
Galileo, 2, 10
Galton board, 339, 346

gauge transformation, 250, 397
Gauss law, 150
Gauss’ theorem, 396, 399
general relativity, 1, 3, 144, 192
generalized co-ordinates, 231–233
generalized force, 64, 234

for angular co-ordinate, 234
generalized momentum, 64, 65, 235,

277

in electromagnetic field, 242
generating function, 292
geodesic, 61, 70

gradient, 390, 398
in polar coordinates, 398

gradient system, 317, 342

gravitational acceleration, 51, 99, 130
apparent, 112–113, 142
of Earth, xv

gravitational constant, xv, 8, 15, 82
gravitational field, 130, 151

uniform, 159–161, 183, 191
gravitational force, 8, 14, 130
gravitational mass, 10
gravitational potential, 129–131, 152
Green’s function, 37
gyroscope, 212, 214, 228, 229, 250

hairy ball theorem, 349
half-width of resonance, 33
Hamilton’s equations, 277–280
Hamilton’s principle, 63, 234

for stretched string, 245
Hamiltonian function, 278

and total energy, 280
for central conservative force, 279
for charged particle, 302

for symmetric top, 284
rate of change of, 280

Hamiltonian system, 321
hard-sphere collision, 90–94, 169, 172
harmonic oscillator, 20–26, 73–76,

312–313, 341, 345

action/angle variables, 356–357
anisotropic, 73
complex representation of, 24–25
damped, 27–29, 341

double, 350, 375

forced, 30–39
isotropic, 51, 73–76, 100, 377

orbit of, 75
with varying frequency, 369

Hartman–Grobman theorem, 422
heat, 26
heat conduction, 332
helium nucleus, 96
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helix, 109
Hénon map, 434, 437, 442

Hénon–Heiles system, 368–369
hidden symmetry, 368
holonomic system, 232, 235
homoclinic intersection, 440
Hopf bifurcation, 326–328, 343
Huygens, 377

hydrogen atom, xv, 83–84, 126

hyperbola, 79, 82, 88, 410
in polar form, 413

hyperbolic point, 418, 440

ignorable co-ordinate, 282–285
impact parameter, 79, 89
improper node, 418
improper transformations, 300
impulse, 37

velocity, 180
impulsive force, 37, 40, 202, 226

incompressible fluid, 290, 392
inelastic collision, 42
inertia tensor, 205, 401
inertial frame, 3–4

transformation of, 295, 298–300
inertial mass, 10
infinite precision, 339
inner product of vectors, 402
insect, 226

integrability, 347–351
integrable system, 294, 347, 353, 437,

438
integral theorems, 393–396
integration of vector, 390
internal force, 177

central, 181, 189, 198
conservative, 189

invariant circle, 440
invariant probability distribution, 432
invariant torus, 349
inverse cube law, 102

inverse square law, 78–84, 358
orbit, 85–89

inversion symmetry, 300
involution, 348
isobars, 119

isolated critical point, 415
isolated system, 6, 178
isotropic harmonic oscillator, 51,

73–76, 100

iteration, 425

Jacobi integral, 360
Jacobian matrix, 314, 415
Jupiter, 98, 100, 125, 154, 193, 304

effect on Sun, 174

KAM, 373, 438
Kepler’s first law, 103

Kepler’s second law, 57, 103

Kepler’s third law, 87, 103, 163, 358,
375

Kermack–McKendrick theorem, 344
kinetic energy, 17, 49

and Euler angles, 223
in CM frame, 188
in orthogonal co-ordinates, 58, 254
near equilibrium, 253
of forced system, 233, 239
of many-body system, 188
of natural system, 233, 280
of particles on string, 266
of rotating body, 199, 207
of stretched string, 244
of two-body system, 161, 162, 166
rate of change, 17, 26, 49, 188, 198
transferred, 166

Kronecker’s symbol, 35

laboratory frame, 165
differential cross-section in, 169,

171, 172
Lagrange multiplier, 72, 195, 240,

249, 406

Lagrange’s equations, 62–66, 128,
231–248
for conservative system, 235
for many-body system, 190–192
for non-conservative force, 234
for two-body system, 161
in polar co-ordinates, 64–66, 234

Lagrangian density, 245
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Lagrangian function, 62, 235
for charged particle, 242
for coupled oscillators, 265
for many-body system, 191
for pendulum, 64, 238
for stretched string, 245
for symmetric top, 236
for two-body system, 161
in uniform gravitational field, 191

Lagrangian points, 251, 303, 378

lamina, 199
Lanchester’s law, 323
Laplace’s equation, 151, 275

Laplace–Runge–Lenz vector, 376

Laplacian, 393
in polar co-ordinates, 400
of vector field, 393, 406

Larmor effect, 120–124, 126, 362
Larmor frequency, 121, 228, 303
laws of mechanics, 1–12, 14

laws of nature, 1
Legendre polynomial, 131
libration, 316, 351, 354
limit cycle, 324–328, 375
line integral, 394
linear independence, 22
linear map, 426
linear system, 314, 415–421
Liouville’s theorem, 289–291
liquid surface, rotating, 114, 125

Lissajous figures, 351
logistic equation, 309–311, 426
logistic map, 426, 432, 441

attractors, 428
in standard form, 427

Lorentz force, 110, 241
Lorentz transformation, 301
Lorenz, 331, 339
Lorenz attractor, 436
Lorenz system, 331–334, 344, 353,

424, 433, 434
Lotka–Volterra system, 318–321, 342

Lozi map, 442

lunar theory, 373
Lyapunov exponent, 338, 353, 432,

442

Macdonald, 342
magnetic bottle, 349
magnetic dipole, 124, 406

magnetic field, 241, 397
of Earth, 334
particle in, 108–109, 120–124
uniform, 243

magnitude of vector, 381
malaria, 342

Mandelbrot set, 460

many-body system, 177–192
angular momentum of, 181–183
energy conservation in, 188–190
Lagrange’s equation for, 190–192

maps, 307, 373, 425–441
area-filling, 353
area-preserving, 353
Arnold’s cat, 443

bounce, 364, 366
cubic, 442

discrete, 353
equal-area, 437
Hénon, 434, 437, 442

linear, 426
logistic, 426, 432, 441

Lozi, 442

nonlinear, 426
Poincaré return, 352, 353
standard, 443

tent, 442

twist, 437, 438
Maskelyne, 15

mass, 6
additive nature of, 12
gravitational and inertial, 10
measurement of, 10
of composite body, 12, 178
reduced, 160

matchbox, 220
maximum scattering angle, 168
Maxwell’s equations, 397
mean free path, 94–96
Mercury, 144, 186
moment of force, 53
moment of inertia, 199, 203

calculation of, 208–211
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principal, 206
shift of origin, 208

momentum, 6
as generator of translation, 296
conservation of, 11, 39, 160, 178,

296
generalized, 64, 65, 235, 242, 277
in CM frame, 162
of many-body system, 178
of rigid body, 197
rate of change, 6, 178, 197

monopole, 132, 137
Moon, xvi, 99, 163, 183–188

precession of orbit, 157

tides due to, 144–148, 154

moving frame, 14, 298–300
multiple collisions, 95
multiply periodic trajectory, 350

n-body problem, 359–362, 374
n-torus, 437
natural system, 232–233

condition for, 280
nautical mile, 102

neap tides, 146
near-integrable system, 372–374, 438
nested tori, 349, 437
Newton, 2, 70

Newton’s first law, 4, 178
Newton’s gravitational constant, xv,

8, 15, 82
Newton’s law of gravity, 8
Newton’s laws, 5–10
Newton’s second law, 6, 12, 178
Newton’s third law, 7, 9, 11, 159, 178,

406

Newton–Raphson iteration, 426
node, 422

improper, 418
proper, 419

nodes on stretched string, 270
non-holonomic system, 232
non-integrable system, 347, 353
non-invertibility, 433
nonlinear map, 426
normal co-ordinates, 264–266

for stretched string, 274

normal modes, 258–271
nonlinear, 350
of coupled oscillators, 261–266
of double pendulum, 260
of particles on string, 266–269
of stretched string, 269–271

nucleus, 96

oblateness, 139
of Earth, 140, 141
of Jupiter, 154

one-dimensional maps, 425–433
orbit, 84–89

Bohr, 84
circular, 81
elliptical, 86–87, 101

hyperbolic, 88–89
in phase space, 308
in rotating frame, 120
inverse cube law, 102

inverse square law, 85–89
of comet, 89, 99

of Earth, 88, 100

of Jupiter, 98

of oscillator, 75
of satellite, 98, 143, 156

precession of, 103, 120, 143
transfer, 100, 193

orientation of rigid body, 221
orthogonal co-ordinates, 58, 253–256,

398
orthogonal tensor, 406

orthogonality, 348
of eigenvectors, 403

orthonormal triad, 383, 404
oscillation, forced, 30–39, 265–266
oscillator, 20–26, 73–76, 312–313,

341, 345

action/angle variables, 356–357
complex representation of, 24–25
damped, 27–29, 274

forced, 30–39, 46

isotropic, 51, 73–76, 100, 377

with varying frequency, 369
oscillators, coupled, 261–266
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outer product of vectors, 402
oval billiard, 366, 441

parabola, 52, 82, 90, 126, 411
in polar form, 413

parabolic co-ordinates, 71

paraboloid, 114
parallax, 174

parallel axes theorem, 209
parallelepiped, 387

moments of inertia, 210
parallelogram law, 6, 382
parity, 300
particle, 5
path, shortest, 59, 61, 70

pendulum, 18–19, 43, 45, 46, 64, 226,

227, 316–317, 341

compound, 200–202
constrained, 238–241, 302

coupled, 261–266
double, 255–257, 260, 369
equivalent simple, 201, 226

forced damped, 336
Foucault’s, 117
hanging from trolley, 249, 302

of varying length, 370, 379

period of, 48
perihelion, 101

period
of orbit, xv, 74, 87, 163
of oscillation, 23, 200
of rotation, 105

period-doubling, 375
period-doubling bifurcation, 428
period-doubling cascade, 428, 435
periodic force, 30–36, 265
periodic trajectory, 350
Perron–Frobenius equation, 432
perturbed twist map, 437
phase line, 309–312
phase of forced oscillation, 31, 33

at resonance, 34
phase plane, 312–318, 415–424
phase portraits, 307–309

local or global, 424
phase space, 289, 307–309

phase velocity, 308
pion, 175

planet, 44, 101, 103, 195

plumb line, 15, 112, 143
Pluto–Charon system, 163
Poincaré, 307, 339
Poincaré return map, 352, 353
Poincaré section, 364, 366, 437, 441,

443

Poincaré–Birkhoff theorem, 440
point particle, 5
Poisson bracket, 293, 304, 348
Poisson’s equation, 151, 397
polar co-ordinates, 57–59, 398–400

acceleration in, 71

Lagrange’s equation in, 64–66
unit vectors for, 71

velocity in, 56
polar vector, 55, 386
position vector, 5, 6, 381

of composite body, 5, 178
relative, 7, 159, 162, 181, 182, 299

potential, 129–152
electrostatic, 129–131, 151
expansion at large distances, 137
gravitational, 129–131, 152
of centrifugal force, 141
of dipole, 132
of Earth, 140
of quadrupole, 132
of spherical distribution, 134
of spheroid, 139
scalar and vector, 241, 397
tidal, 144

potential energy, 18, 50, 394
effective, 77, 78, 80, 235, 239, 283,

285, 288
external, 189, 191, 198
in many-body system, 189
internal, 161, 189, 191
inverse square law, 78
near equilibrium, 20, 256
of central force, 66
of centrifugal force, 114, 141, 239
of harmonic oscillator, 20, 50
of impulsive force, 40
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of particles on string, 267
of simple pendulum, 19
of stretched string, 244
rate of change, 50

precession, 103, 108, 211–215, 330
Larmor, 120, 362
of Earth’s axis, 224, 330
of equinoxes, 214–215, 229

of orbit, 143, 156, 157

of rolling wheel, 228

of symmetric top, 213, 228,
236–237, 249

planetary, 144
predictability, 337–339

loss of, 339, 374
pressure, in fluid, 155

prey–predator system, 318–321
Prigogine and Lefever, 327
principal axes of inertia, 205–211

rotation about, 218–220
principal moment of inertia, 206, 329
Principia, 2
probability distribution attractors,

432
product of inertia, 203

shift of origin, 208
projectile, 51–53, 68, 82, 127

range of, 52, 68, 102

trajectory of, 52, 53, 68

projection of vector, 384
prolate spheroid, 139
proper node, 419
proton, xv, 14, 167
pseudoscalar, 300
pulley, 248

quadrupole, 132
quadrupole moment, 133, 139

of Earth, 140, 154, 155

quadrupole tensor, 407

quality factor, 28, 33, 47

quantum mechanics, 2, 9, 20, 67, 83,
301

quasiperiodic trajectory, 350

radial energy equation, 77, 280

for inverse square law, 78
radiation gauge, 397
range of projectile, 52, 68, 102

range of tides, 147
rate constant, 426
rate of particle detection, 92, 171
rational approximation, 373
Rayleigh’s equation, 324–326, 343
reaction on axis, 200–203, 218, 226

rectangular plate
moments of inertia, 210

reduced mass, 160
reflection symmetry, 205, 300
relative position, 7, 159, 162, 181,

182, 299
relative velocity, 7, 299

in elastic collision, 41
relativity, 3

general, 1, 3, 144, 192
principle of, 3–4, 10, 26, 198,

295–301
special, 2, 10, 109, 301

relaxation oscillation, 325
relaxation time, 28
renormalization, 429
repeller, 310
resonance, 32–34, 148, 187, 373

half-width of, 33
Richardson, 324
right-hand rule, 105, 385
rigid body, 197–225

and Euler angles, 221
angular momentum of, 197, 199,

203–208, 218
angular velocity of, 216–218
energy of, 198
free motion of, 223–225, 228

generalized co-ordinates for, 231
kinetic energy of, 199, 207, 233
precession of, 211–215
symmetric, 207–208, 222

rigid-body rotation, 329–330, 343

Rikitake dynamo, 334–336, 345

Roche limit, 155, 186
rocket, 102, 179–181, 192

Ross, 342
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rotating frame, 4, 105–125, 218, 239
acceleration in, 111–112
rate of change of vector in, 106–108

rotation, 317
rotation about an axis, 198–202

stability of, 218–220
rotation matrix, 417
rotation number, 437, 438
rotation of axes, 383
rotational symmetry, 205

and angular momentum
conservation, 291, 292,
296–297

Routh’s rule, 209–211
runoff problem, 318
Rutherford scattering, 96–97

saddle, 418
Sarkovskii, 430
satellite, 13, 163

orbit of, 143, 156, 194

synchronous, 98, 192

scalar, 5, 300, 381
scalar field, 390
scalar potential, 241, 397
scalar product, 384
scalar triple product, 387
scattering, 90–94, 96–97, 165–173

by multiple targets, 95
Coulomb, 79–80
cross-section, 90–97, 168–173
hard-sphere, 90–94, 172
Rutherford, 96–97

scattering angle, 89, 91
maximum, 168

Schiehallion, 15

second-order convergence, 426
semi-axes, 75, 87, 88, 410
semi-latus rectum, 86
semi-major axis, 76, 87, 410

of Earth’s orbit, xv, 98

semi-minor axis, 89, 410
sensitivity to initial conditions,

337–339, 353, 432, 440
separatrix, 317, 341, 372
sidereal day, 105

sigmoid curve, 310
similarity transformation, 417
SIR model, 343

slingshot, 101

Smale horseshoe, 436, 440
small denominators, 373
small oscillations, 253–271

of particles on string, 266–269
of pendulum, 200
of rotating body, 220
of stretched string, 244–248,

269–271
Solar System, 360, 374
solid angle, 93
source or sink, 419
space, 2–4
space cone, 224
space translation, 296
spacecraft, 100, 180, 193, 227, 251

sphere
moments of inertia, 210, 227

potential of, 135
rolling on plane, 232

spherical charge distribution, 134–136
spherical polars, 57–59, 65, 71,

398–400
kinetic energy in, 58
Lagrange’s equations in, 65
volume element in, 134

spherical shell, 134
spheroid, 139, 207, 228

spiral point, 419, 422
spiral source or sink, 419
spring, 69

spring tides, 146
square of vector, 384
squeezing, 353, 436, 440
stability

and Laplace’s equation, 275

asymptotic, 310
of equilibrium, 22, 259
of Lagrangian points, 251, 303

of rotation, 218–220, 239
of vertical top, 288–289
structural, 309

stable manifold, 315
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theorem, 423
stable point, 314
standard map, 443

standing wave, 270
star, 419
steady convection, 333
steradian, 93
Stokes’ theorem, 394
strange attractor, 334, 338, 436
stress tensor, 407

stretched string, 244–248
normal modes of, 269–271
particles on, 266–269

stretching, 353, 433, 436, 440
structural stability, 309
subcritical bifurcation, 327
subtraction of vectors, 382
Sun, xvi, 98, 125, 304

angular position of, 174

effect on Earth’s rotation, 215
potential of, 136
tides due to, 144–148, 187

supercritical bifurcation, 327, 343
supercritical flip bifurcation, 428
superposition principle, 21, 259
surface of rotating liquid, 114, 141
surface of section, 351–353
surface, closed, 148, 396
symmetric rigid body, 207–208, 222

angular momentum of, 207, 222
free motion of, 223–225
kinetic energy of, 223, 233

symmetric tensor, 205, 401
symmetric top, 236–237, 284–289, 363

conservation laws for, 284, 291
free to slide, 250, 302

Hamiltonian for, 284
Lagrangian for, 236
precession of, 213, 228, 236–237
vertical, 288–289

symmetries and conservation laws,
291–301, 347

synchronous satellite, 98, 192

Tacoma Narrows bridge, 326
target particle, 165

tautochrone, 377

tennis racquet theorem, 220, 329
tension in string, 244
tensor, 400–405, 415, 424

inertia, 205, 401
symmetric, 205, 401, 403–404

tensor product of vectors, 402
tent map, 442

terminal speed, 45
three-body problem, 359–362

restricted, 251, 303

three-body system, 12, 14

tides, 144–148, 154, 184, 195

atmospheric, 187
due to Earth, 154, 155

due to oceans, 155

spring and neap, 146
time, 2–4
time translation, 295
top, 212, 236–237, 284–289, 363
torus, 349, 352, 373
torus breakdown, 437
total cross-section, 94

and mean free path, 94
for hard-sphere scattering, 94
for Rutherford scattering, 97

trace, 406, 416
trade winds, 119
trajectory

closed, 350
in phase space, 308
of projectile, 52, 53, 68

transient, 32
translation symmetry, 295–296
transposed tensor, 401
triple product, 387–388
Trojan asteroids, 304

true anomaly, 101

true centre, 422, 424

turbulent convection, 333
twist map, 437, 438
two-body collision, 11, 14, 39–42,

165–173
two-body system, 159–173

Lagrangian for, 161
two-cycle, 434, 435
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two-dimensional maps, 433–437

unaccelerated observer, 3
uncertainty principle, 301
uniform gravitational field, 159–161,

183
uniform magnetic field, 108–109, 243
unit vector, 5, 382
units, xvi
universal function, 429
unstable manifold, 315
unstable point, 310, 314, 418, 419

valence, of tensor, 400
Van der Pol equation, 326, 343
variation, of integral, 61, 233
vector, 4–5, 381

angular velocity, 105
axial, 55, 105, 386
components of, 382
differentiation of, 388
integration of, 390
polar, 55, 386
position, 5, 381
unit, 5, 382
zero, 382

vector field, 390
Laplacian of, 393, 406

line integral of, 394
vector potential, 241, 397
vector product, 385

vector triple product, 388
velocity, 6

circular orbital, 81
escape, 82–83, 99

in rotating body, 106–108
in rotating frame, 111
of centre of mass, 160, 178, 299
of light, xv
of propagation, 246
polar components of, 56, 58
relative, 7, 40, 299

velocity impulse, 180
Verhulst, 309
vertical top, 288–289
violin string, 324
virial theorem, 101, 196

Volterra’s principle, 321
vorticity, 392

war, 322–324
wave equation, 246
wave, electromagnetic, 9
wavelength, of normal mode of string,

270
width, of resonance, 32
work done by force, 26, 49, 188, 234

Zeeman effect, 121
zero vector, 382
zero-velocity curve, 360, 367, 378
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